
Math 510/610 Exam 2
Fall 2022 Fri Nov 4

No electronic devices are allowed. There are 4 pages and each page is worth 6 points, for
a total of 24 points.

1. Linear and Bilinear Forms. Consider the standard basis vectors e1, e2 ∈ R2.

(a) Let ϕ : R2 × R2 → R be the bilinear form defined by

ϕ(e1, e1) = 0, ϕ(e1, e2) = 1, ϕ(e2, e1) = −1, ϕ(e2, e2) = 0.

Use this information to compute ϕ(x,y), where x = (1, 2) and y = (2,−1).

We have

ϕ(x,y) = ϕ(1e1 + 2e2, 2e1 − 1e2)

= 2 · ϕ(e1, e1)− 1 · ϕ(e1, e2) + 4 · ϕ(e2, e1)− 2 · ϕ(e2, e2)

= 2 · 0− 1 · 1 + 4 · (−1)− 2 · 0
= −5.

Alternatively, the provided information tells us that

ϕ(x,y) = xT

(
0 1
−1 0

)
y

=
(
1 2

)( 0 1
−1 0

)(
2
−1

)
=
(
1 2

)(−1
−2

)
= −1− 4

= −5.

Remark: This bilinear form is secretly the determinant of a 2× 2 matrix:

ϕ

(
a1 b1
a2 b2

)
=
(
a1 a2

)( 0 1
−1 0

)(
b1
b2

)
= a1b2 − a2b1.

(b) Express the following polynomial in the form f(x) = b + bTx + xTBx for some
scalar b ∈ R, vector b ∈ R2 and symmetric matrix B ∈ R2×2:

f(x) = f(x, y) = 2 + x + 5y + x2 + xy − 3y2.

Solution.

f(x, y) = 2 +
(
1 5

)(x
y

)
+
(
x y

)( 5 1/2
1/2 −3

)(
x
y

)
2. Fundamental Subspaces. Consider the following matrix:

A =

(
1 1 1
0 1 2

)



(a) Compute the dimensions of the four fundamental subspaces: R(A), N (A), C(A),
N (AT ). [You do not need to find bases for these subspaces; just the dimensions.]

Solution. The spaces R(A) and N (A) are orthogonal complements in R3, so that

dimR(A) + dimN (A) = 3.

The spaces C(A) and N (AT ) are orthogonal complements in R2, so that

dim C(A) + dimN (AT ) = 2.

Since the two rows of A are not parallel we have dimR(A) = 2 and hence dimN (A) =
1. Finally, from the Fundamental Theorem we have dim C(A) = dimR(A) = 2 and
hence dimN (AT ) = 0.

(b) Since A has independent rows and is not square, we know that it has infinitely
many right inverses. Find one. [Hint: There is a shortcut using (AAT )−1.]

Shortcut. Since A has independent rows we know that (AAT )−1 exists. But then
B = AT (AAT )−1 is a right inverse of A because

AB = A[AT (AAT )−1] = (AAT )(AAT )−1 = I.

Computation:

B = AT (AAT )−1

=

1 0
1 1
1 2

(3 3
3 5

)−1

=

1 0
1 1
1 2

 1

6

(
5 −3
−3 3

)

=
1

6

 5 −3
2 0
−1 3

 .

The Long Way. Let X =
(
x y

)
be a 3 × 2 matrix satisfying AX = I2, which

is equivalent to the matrix equations Ax = e1 and Ay = e2. We can solve both
systems simultaneously by row-reducing an augmented matrix:(

1 1 1 1 0
0 1 2 0 1

)
 

(
1 0 −1 1 −1
0 1 2 0 1

)
.

Thus we have(
1 0 −1
0 1 2

)
x =

(
1
0

)
and

(
1 0 −1
0 1 2

)
x =

(
−1
1

)
,

which gives

x =

1
0
0

+ s

 1
−2
1

 and y =

−1
1
0

+ t

 1
−2
1

 .



Hence the general right inverse of A has the form

X =

1 + s −1 + t
−2s 1− 2t
s t

 .

The shortcut answer corresponds to s = −1/6 and t = 1/2.

3. Least Squares. Consider the following three data points in the x, y-plane:

(x1, y1) = (0, 1), (x2, y2) = (1, 3), (x3, y3) = (2, 3).

We wish to find the line y = a + bx thst is closest to these data points.

(a) Write a single matrix equation Xa = y for the unknowns a = (a, b) to express the
fact that all three data points are on the line y = a + bx.

We have

 a + x1b = y1
a + x2b = y2
a + x3b = y3

 
 a + 0b = 1

a + 1b = 3
a + 2b = 3

 
1 0

1 1
1 2

(a
b

)
=

1
3
3

 .

Remark: This is the same matrix from Problem 2.

(b) The equation from part (a) has no solution. Instead, solve the normal equation
XTXa = XTy to find the best fit line.

We have

Xa = y

XTXa = XTy(
1 1 1
0 1 2

)1 0
1 1
1 2

(a
b

)
=

(
1 1 1
0 1 2

)1
3
3


(

3 3
3 5

)(
a
b

)
=

(
7
9

)
(
a
b

)
=

(
3 3
3 5

)−1(
7
9

)
=

1

6

(
5 −3
−3 3

)(
7
9

)
=

1

6

(
8
6

)
=

(
4/3
1

)
.

So the best fit line is y = 4/3 + 1x. Here is a picture:



4. Determinants. Let A and B be square matrices of the same size. You can assume
the following properties of determinants:

• det(A) 6= 0 if and only if A−1 exists,
• det(I) = 1,
• det(AT ) = det(A),
• det(AB) = det(A)det(B).

Use these to prove the following results.

(a) If ATA = I then det(A) = ±1.

Proof. Suppose that ATA = I. Then we have

ATA = I

det(ATA) = det(I)

det(AT )det(A) = 1

det(A)det(A) = 1

det(A)2 = 1

det(A) = ±1.

(b) If (AB)−1 exists, then A−1 and B−1 exist.

Proof. We have

(AB)−1 exists =⇒ det(AB) 6= 0

=⇒ det(A)det(B) 6= 0

=⇒ det(A) 6= 0 and det(B) 6= 0

=⇒ A−1 exists and B−1 exists.



(c) If A−1 exists then det(A−1BA) = det(B).

Proof. Suppose that A−1 exists, so that det(A) 6= 0. Then since A−1A = I we have

det(A−1A) = det(I)

det(A−1)det(A) = 1

det(A−1) = 1/det(A),

and for any matrix B we have

det(A−1BA) = det(A−1)det(B)det(A)

=
1

det(A)
det(B)det(A)

=
1

det(A)
det(A)det(B)

= det(B).

(Matrix multiplication is not commutative, but determinants are scalars.)


