No electronic devices are allowed. There are 4 pages and each page is worth 6 points, for a total of 24 points.

- **1. Linear and Bilinear Forms.** Consider the standard basis vectors $\mathbf{e}_1, \mathbf{e}_2 \in \mathbb{R}^2$.
 - (a) Let $\varphi : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ be the bilinear form defined by

$$\varphi(\mathbf{e}_1, \mathbf{e}_1) = 0, \quad \varphi(\mathbf{e}_1, \mathbf{e}_2) = 1, \quad \varphi(\mathbf{e}_2, \mathbf{e}_1) = -1, \quad \varphi(\mathbf{e}_2, \mathbf{e}_2) = 0.$$

Use this information to compute $\varphi(\mathbf{x}, \mathbf{y})$, where $\mathbf{x} = (1, 2)$ and $\mathbf{y} = (2, -1)$.

We have

$$\varphi(\mathbf{x}, \mathbf{y}) = \varphi(\mathbf{1}\mathbf{e}_1 + \mathbf{2}\mathbf{e}_2, \mathbf{2}\mathbf{e}_1 - \mathbf{1}\mathbf{e}_2)$$

= $2 \cdot \varphi(\mathbf{e}_1, \mathbf{e}_1) - 1 \cdot \varphi(\mathbf{e}_1, \mathbf{e}_2) + 4 \cdot \varphi(\mathbf{e}_2, \mathbf{e}_1) - 2 \cdot \varphi(\mathbf{e}_2, \mathbf{e}_2)$
= $2 \cdot 0 - 1 \cdot 1 + 4 \cdot (-1) - 2 \cdot 0$
= $-5.$

Alternatively, the provided information tells us that

$$\varphi(\mathbf{x}, \mathbf{y}) = \mathbf{x}^T \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \mathbf{y}$$
$$= \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ -2 \end{pmatrix}$$
$$= -1 - 4$$
$$= -5.$$

Remark: This bilinear form is secretly the determinant of a 2×2 matrix:

$$\varphi \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} = \begin{pmatrix} a_1 & a_2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$
$$= a_1 b_2 - a_2 b_1.$$

(b) Express the following polynomial in the form $f(\mathbf{x}) = b + \mathbf{b}^T \mathbf{x} + \mathbf{x}^T B \mathbf{x}$ for some scalar $b \in \mathbb{R}$, vector $\mathbf{b} \in \mathbb{R}^2$ and symmetric matrix $B \in \mathbb{R}^{2 \times 2}$:

$$f(\mathbf{x}) = f(x, y) = 2 + x + 5y + x^2 + xy - 3y^2.$$

Solution.

$$f(x,y) = 2 + \begin{pmatrix} 1 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 5 & 1/2 \\ 1/2 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

2. Fundamental Subspaces. Consider the following matrix:

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

(a) Compute the dimensions of the four fundamental subspaces: $\mathcal{R}(A)$, $\mathcal{N}(A)$, $\mathcal{C}(A)$, $\mathcal{N}(A^T)$. [You do not need to find bases for these subspaces; just the dimensions.]

Solution. The spaces $\mathcal{R}(A)$ and $\mathcal{N}(A)$ are orthogonal complements in \mathbb{R}^3 , so that

$$\dim \mathcal{R}(A) + \dim \mathcal{N}(A) = 3.$$

The spaces $\mathcal{C}(A)$ and $\mathcal{N}(A^T)$ are orthogonal complements in \mathbb{R}^2 , so that

$$\dim \mathcal{C}(A) + \dim \mathcal{N}(A^T) = 2.$$

Since the two rows of A are not parallel we have dim $\mathcal{R}(A) = 2$ and hence dim $\mathcal{N}(A) = 1$. 1. Finally, from the Fundamental Theorem we have dim $\mathcal{C}(A) = \dim \mathcal{R}(A) = 2$ and hence dim $\mathcal{N}(A^T) = 0$.

(b) Since A has independent rows and is not square, we know that it has infinitely many right inverses. Find one. [Hint: There is a shortcut using $(AA^T)^{-1}$.]

Shortcut. Since A has independent rows we know that $(AA^T)^{-1}$ exists. But then $B = A^T (AA^T)^{-1}$ is a right inverse of A because

$$AB = A[A^T(AA^T)^{-1}] = (AA^T)(AA^T)^{-1} = I.$$

Computation:

$$B = A^{T} (AA^{T})^{-1}$$

$$= \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 3 & 3 \\ 3 & 5 \end{pmatrix}^{-1}$$

$$= \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} \frac{1}{6} \begin{pmatrix} 5 & -3 \\ -3 & 3 \end{pmatrix}$$

$$= \frac{1}{6} \begin{pmatrix} 5 & -3 \\ 2 & 0 \\ -1 & 3 \end{pmatrix}.$$

The Long Way. Let $X = (\mathbf{x} | \mathbf{y})$ be a 3×2 matrix satisfying $AX = I_2$, which is equivalent to the matrix equations $A\mathbf{x} = \mathbf{e}_1$ and $A\mathbf{y} = \mathbf{e}_2$. We can solve both systems simultaneously by row-reducing an augmented matrix:

$$\left(\begin{array}{ccc|c} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 & 1 \end{array}\right) \quad \rightsquigarrow \quad \left(\begin{array}{ccc|c} 1 & 0 & -1 & 1 & -1 \\ 0 & 1 & 2 & 0 & 1 \end{array}\right).$$

Thus we have

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix} \mathbf{x} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$,

which gives

$$\mathbf{x} = \begin{pmatrix} 1\\0\\0 \end{pmatrix} + s \begin{pmatrix} 1\\-2\\1 \end{pmatrix} \quad \text{and} \quad \mathbf{y} = \begin{pmatrix} -1\\1\\0 \end{pmatrix} + t \begin{pmatrix} 1\\-2\\1 \end{pmatrix}.$$

Hence the general right inverse of A has the form

$$X = \begin{pmatrix} 1+s & -1+t \\ -2s & 1-2t \\ s & t \end{pmatrix}.$$

The shortcut answer corresponds to s = -1/6 and t = 1/2.

3. Least Squares. Consider the following three data points in the x, y-plane:

$$(x_1, y_1) = (0, 1), \quad (x_2, y_2) = (1, 3), \quad (x_3, y_3) = (2, 3).$$

We wish to find the line y = a + bx that is closest to these data points.

(a) Write a single matrix equation $X\mathbf{a} = \mathbf{y}$ for the unknowns $\mathbf{a} = (a, b)$ to express the fact that all three data points are on the line y = a + bx.

We have

$$\left\{ \begin{array}{cc} a + x_1 b &= y_1 \\ a + x_2 b &= y_2 \\ a + x_3 b &= y_3 \end{array} \right\} \rightsquigarrow \left\{ \begin{array}{cc} a + 0b &= 1 \\ a + 1b &= 3 \\ a + 2b &= 3 \end{array} \right\} \rightsquigarrow \left(\begin{array}{c} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{array} \right) \left(\begin{array}{c} a \\ b \end{array} \right) = \left(\begin{array}{c} 1 \\ 3 \\ 3 \end{array} \right)$$

Remark: This is the same matrix from Problem 2.

(b) The equation from part (a) has no solution. Instead, solve the normal equation $X^T X \mathbf{a} = X^T \mathbf{y}$ to find the best fit line.

We have

$$X\mathbf{a} = \mathbf{y}$$

$$X^{T}X\mathbf{a} = X^{T}\mathbf{y}$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 3 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 7 \\ 9 \end{pmatrix}$$

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 3 & 3 \\ 3 & 5 \end{pmatrix}^{-1} \begin{pmatrix} 7 \\ 9 \end{pmatrix}$$

$$= \frac{1}{6} \begin{pmatrix} 5 & -3 \\ -3 & 3 \end{pmatrix} \begin{pmatrix} 7 \\ 9 \end{pmatrix}$$

$$= \frac{1}{6} \begin{pmatrix} 8 \\ 6 \end{pmatrix}$$

$$= \begin{pmatrix} 4/3 \\ 1 \end{pmatrix}.$$

So the best fit line is y = 4/3 + 1x. Here is a picture:

4. Determinants. Let A and B be square matrices of the same size. You can assume the following properties of determinants:

- $det(A) \neq 0$ if and only if A^{-1} exists,
- $\det(I) = 1$,
- $\det(A^T) = \det(A),$ $\det(AB) = \det(A)\det(B).$

Use these to prove the following results.

(a) If $A^T A = I$ then $det(A) = \pm 1$.

Proof. Suppose that $A^T A = I$. Then we have

$$A^{T}A = I$$
$$\det(A^{T}A) = \det(I)$$
$$\det(A^{T})\det(A) = 1$$
$$\det(A)\det(A) = 1$$
$$\det(A)^{2} = 1$$
$$\det(A) = \pm 1.$$

(b) If $(AB)^{-1}$ exists, then A^{-1} and B^{-1} exist.

Proof. We have

$$(AB)^{-1}$$
 exists $\Longrightarrow \det(AB) \neq 0$
 $\Longrightarrow \det(A)\det(B) \neq 0$
 $\Longrightarrow \det(A) \neq 0$ and $\det(B) \neq 0$
 $\Longrightarrow A^{-1}$ exists and B^{-1} exists.

(c) If A^{-1} exists then $\det(A^{-1}BA) = \det(B)$.

Proof. Suppose that A^{-1} exists, so that $\det(A) \neq 0$. Then since $A^{-1}A = I$ we have

$$det(A^{-1}A) = det(I)$$
$$det(A^{-1})det(A) = 1$$
$$det(A^{-1}) = 1/det(A),$$

and for any matrix B we have

$$det(A^{-1}BA) = det(A^{-1})det(B)det(A)$$
$$= \frac{1}{det(A)}det(B)det(A)$$
$$= \frac{1}{det(A)}det(A)det(B)$$
$$= det(B).$$

(Matrix multiplication is not commutative, but determinants are scalars.)