No electronic devices are allowed. There are 4 pages and each page is worth 6 points, for a total of 24 points.

1. Linear and Bilinear Forms. Consider the standard basis vectors $\mathbf{e}_{1}, \mathbf{e}_{2} \in \mathbb{R}^{2}$.
(a) Let $\varphi: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the bilinear form defined by

$$
\varphi\left(\mathbf{e}_{1}, \mathbf{e}_{1}\right)=0, \quad \varphi\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)=1, \quad \varphi\left(\mathbf{e}_{2}, \mathbf{e}_{1}\right)=-1, \quad \varphi\left(\mathbf{e}_{2}, \mathbf{e}_{2}\right)=0 .
$$

Use this information to compute $\varphi(\mathbf{x}, \mathbf{y})$, where $\mathbf{x}=(1,2)$ and $\mathbf{y}=(2,-1)$.
We have

$$
\begin{aligned}
\varphi(\mathbf{x}, \mathbf{y}) & =\varphi\left(1 \mathbf{e}_{1}+2 \mathbf{e}_{2}, 2 \mathbf{e}_{1}-1 \mathbf{e}_{2}\right) \\
& =2 \cdot \varphi\left(\mathbf{e}_{1}, \mathbf{e}_{1}\right)-1 \cdot \varphi\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)+4 \cdot \varphi\left(\mathbf{e}_{2}, \mathbf{e}_{1}\right)-2 \cdot \varphi\left(\mathbf{e}_{2}, \mathbf{e}_{2}\right) \\
& =2 \cdot 0-1 \cdot 1+4 \cdot(-1)-2 \cdot 0 \\
& =-5
\end{aligned}
$$

Alternatively, the provided information tells us that

$$
\begin{aligned}
\varphi(\mathbf{x}, \mathbf{y}) & =\mathbf{x}^{T}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \mathbf{y} \\
& =\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{2}{-1} \\
& =\left(\begin{array}{ll}
1 & 2
\end{array}\right)\binom{-1}{-2} \\
& =-1-4 \\
& =-5
\end{aligned}
$$

Remark: This bilinear form is secretly the determinant of a 2×2 matrix:

$$
\begin{aligned}
\varphi\left(\begin{array}{l|l}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right) & =\left(\begin{array}{ll}
a_{1} & a_{2}
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{b_{1}}{b_{2}} \\
& =a_{1} b_{2}-a_{2} b_{1}
\end{aligned}
$$

(b) Express the following polynomial in the form $f(\mathbf{x})=b+\mathbf{b}^{T} \mathbf{x}+\mathbf{x}^{T} B \mathbf{x}$ for some scalar $b \in \mathbb{R}$, vector $\mathbf{b} \in \mathbb{R}^{2}$ and symmetric matrix $B \in \mathbb{R}^{2 \times 2}$:

$$
f(\mathbf{x})=f(x, y)=2+x+5 y+x^{2}+x y-3 y^{2} .
$$

Solution.

$$
f(x, y)=2+\left(\begin{array}{ll}
1 & 5
\end{array}\right)\binom{x}{y}+\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{cc}
5 & 1 / 2 \\
1 / 2 & -3
\end{array}\right)\binom{x}{y}
$$

2. Fundamental Subspaces. Consider the following matrix:

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right)
$$

(a) Compute the dimensions of the four fundamental subspaces: $\mathcal{R}(A), \mathcal{N}(A), \mathcal{C}(A)$, $\mathcal{N}\left(A^{T}\right)$. [You do not need to find bases for these subspaces; just the dimensions.]

Solution. The spaces $\mathcal{R}(A)$ and $\mathcal{N}(A)$ are orthogonal complements in \mathbb{R}^{3}, so that

$$
\operatorname{dim} \mathcal{R}(A)+\operatorname{dim} \mathcal{N}(A)=3
$$

The spaces $\mathcal{C}(A)$ and $\mathcal{N}\left(A^{T}\right)$ are orthogonal complements in \mathbb{R}^{2}, so that

$$
\operatorname{dim} \mathcal{C}(A)+\operatorname{dim} \mathcal{N}\left(A^{T}\right)=2
$$

Since the two rows of A are not parallel we have $\operatorname{dim} \mathcal{R}(A)=2$ and hence $\operatorname{dim} \mathcal{N}(A)=$ 1. Finally, from the Fundamental Theorem we have $\operatorname{dim} \mathcal{C}(A)=\operatorname{dim} \mathcal{R}(A)=2$ and hence $\operatorname{dim} \mathcal{N}\left(A^{T}\right)=0$.
(b) Since A has independent rows and is not square, we know that it has infinitely many right inverses. Find one. [Hint: There is a shortcut using $\left(A A^{T}\right)^{-1}$.]

Shortcut. Since A has independent rows we know that $\left(A A^{T}\right)^{-1}$ exists. But then $B=A^{T}\left(A A^{T}\right)^{-1}$ is a right inverse of A because

$$
A B=A\left[A^{T}\left(A A^{T}\right)^{-1}\right]=\left(A A^{T}\right)\left(A A^{T}\right)^{-1}=I
$$

Computation:

$$
\begin{aligned}
B & =A^{T}\left(A A^{T}\right)^{-1} \\
& =\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right)\left(\begin{array}{ll}
3 & 3 \\
3 & 5
\end{array}\right)^{-1} \\
& =\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right) \frac{1}{6}\left(\begin{array}{cc}
5 & -3 \\
-3 & 3
\end{array}\right) \\
& =\frac{1}{6}\left(\begin{array}{cc}
5 & -3 \\
2 & 0 \\
-1 & 3
\end{array}\right) .
\end{aligned}
$$

The Long Way. Let $X=(\mathbf{x} \mid \mathbf{y})$ be a 3×2 matrix satisfying $A X=I_{2}$, which is equivalent to the matrix equations $A \mathbf{x}=\mathbf{e}_{1}$ and $A \mathbf{y}=\mathbf{e}_{2}$. We can solve both systems simultaneously by row-reducing an augmented matrix:

$$
\left(\begin{array}{lll|l|l}
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 2 & 0 & 1
\end{array}\right) \rightsquigarrow\left(\begin{array}{ccc|c|c}
1 & 0 & -1 & 1 & -1 \\
0 & 1 & 2 & 0 & 1
\end{array}\right) .
$$

Thus we have

$$
\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2
\end{array}\right) \mathrm{x}=\binom{1}{0} \quad \text { and } \quad\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2
\end{array}\right) \mathrm{x}=\binom{-1}{1}
$$

which gives

$$
\mathbf{x}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+s\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right) \quad \text { and } \quad \mathbf{y}=\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)+t\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right) .
$$

Hence the general right inverse of A has the form

$$
X=\left(\begin{array}{cc}
1+s & -1+t \\
-2 s & 1-2 t \\
s & t
\end{array}\right)
$$

The shortcut answer corresponds to $s=-1 / 6$ and $t=1 / 2$.
3. Least Squares. Consider the following three data points in the x, y-plane:

$$
\left(x_{1}, y_{1}\right)=(0,1), \quad\left(x_{2}, y_{2}\right)=(1,3), \quad\left(x_{3}, y_{3}\right)=(2,3) .
$$

We wish to find the line $y=a+b x$ thst is closest to these data points.
(a) Write a single matrix equation $X \mathbf{a}=\mathbf{y}$ for the unknowns $\mathbf{a}=(a, b)$ to express the fact that all three data points are on the line $y=a+b x$.

We have

$$
\left\{\begin{array}{l}
a+x_{1} b=y_{1} \\
a+x_{2} b=y_{2} \\
a+x_{3} b=y_{3}
\end{array}\right\} \rightsquigarrow\left\{\begin{array}{l}
a+0 b=1 \\
a+1 b=3 \\
a+2 b=3
\end{array}\right\} \rightsquigarrow\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right)\binom{a}{b}=\left(\begin{array}{l}
1 \\
3 \\
3
\end{array}\right) .
$$

Remark: This is the same matrix from Problem 2.
(b) The equation from part (a) has no solution. Instead, solve the normal equation $X^{T} X \mathbf{a}=X^{T} \mathbf{y}$ to find the best fit line.

We have

$$
\begin{aligned}
X \mathbf{a} & =\mathbf{y} \\
X^{T} X \mathbf{a} & =X^{T} \mathbf{y} \\
\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right)\binom{a}{b} & =\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{l}
1 \\
3 \\
3
\end{array}\right) \\
\left(\begin{array}{ll}
3 & 3 \\
3 & 5
\end{array}\right)\binom{a}{b} & =\binom{7}{9} \\
\binom{a}{b} & =\left(\begin{array}{cc}
3 & 3 \\
3 & 5
\end{array}\right)^{-1}\binom{7}{9} \\
& =\frac{1}{6}\left(\begin{array}{cc}
5 & -3 \\
-3 & 3
\end{array}\right)\binom{7}{9} \\
& =\frac{1}{6}\binom{8}{6} \\
& =\binom{4 / 3}{1} .
\end{aligned}
$$

So the best fit line is $y=4 / 3+1 x$. Here is a picture:

4. Determinants. Let A and B be square matrices of the same size. You can assume the following properties of determinants:

- $\operatorname{det}(A) \neq 0$ if and only if A^{-1} exists,
- $\operatorname{det}(I)=1$,
- $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$,
- $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

Use these to prove the following results.
(a) If $A^{T} A=I$ then $\operatorname{det}(A)= \pm 1$.

Proof. Suppose that $A^{T} A=I$. Then we have

$$
\begin{aligned}
A^{T} A & =I \\
\operatorname{det}\left(A^{T} A\right) & =\operatorname{det}(I) \\
\operatorname{det}\left(A^{T}\right) \operatorname{det}(A) & =1 \\
\operatorname{det}(A) \operatorname{det}(A) & =1 \\
\operatorname{det}(A)^{2} & =1 \\
\operatorname{det}(A) & = \pm 1 .
\end{aligned}
$$

(b) If $(A B)^{-1}$ exists, then A^{-1} and B^{-1} exist.

Proof. We have

$$
\begin{aligned}
(A B)^{-1} \text { exists } & \Longrightarrow \operatorname{det}(A B) \neq 0 \\
& \Longrightarrow \operatorname{det}(A) \operatorname{det}(B) \neq 0 \\
& \Longrightarrow \operatorname{det}(A) \neq 0 \text { and } \operatorname{det}(B) \neq 0 \\
& \Longrightarrow A^{-1} \text { exists and } B^{-1} \text { exists. }
\end{aligned}
$$

(c) If A^{-1} exists then $\operatorname{det}\left(A^{-1} B A\right)=\operatorname{det}(B)$.

Proof. Suppose that A^{-1} exists, so that $\operatorname{det}(A) \neq 0$. Then since $A^{-1} A=I$ we have

$$
\begin{aligned}
\operatorname{det}\left(A^{-1} A\right) & =\operatorname{det}(I) \\
\operatorname{det}\left(A^{-1}\right) \operatorname{det}(A) & =1 \\
\operatorname{det}\left(A^{-1}\right) & =1 / \operatorname{det}(A),
\end{aligned}
$$

and for any matrix B we have

$$
\begin{aligned}
\operatorname{det}\left(A^{-1} B A\right) & =\operatorname{det}\left(A^{-1}\right) \operatorname{det}(B) \operatorname{det}(A) \\
& =\frac{1}{\operatorname{det}(A)} \operatorname{det}(B) \operatorname{det}(A) \\
& =\frac{1}{\operatorname{det}(A)} \operatorname{det}(A) \operatorname{det}(B) \\
& =\operatorname{det}(B) .
\end{aligned}
$$

(Matrix multiplication is not commutative, but determinants are scalars.)

