• State the definitions of row space, column space, nullspace. It is important to know that

 $\mathcal{C}(A) = \text{all vectors of the form } A\mathbf{x},$

and

 $A\mathbf{x} = \mathbf{0} \iff \mathbf{x}$ is orthogonal to every row of A.

• The previous observation says that $\mathcal{N}(A) = \mathcal{R}(A)^{\perp}$. In general, if $U \subseteq V$ is a subspace of an inner product space V then we define

$$U^{\perp} = \{ \mathbf{v} \in V : \langle \mathbf{u}, \mathbf{v} \rangle = 0 \text{ for all } \mathbf{u} \in U \}.$$

If V is finite dimensional, then you should know (but you don't need to prove) that

$$\dim U + \dim U^{\perp} = \dim V.$$

• If A is $m \times n$ then $\mathcal{R}(A)$ and $\mathcal{N}(A)$ are subspaces of \mathbb{R}^n , while $\mathcal{C}(A)$ and $\mathcal{N}(A^T)$ are subspaces of \mathbb{R}^m . It follows from the previous fact that

$$\dim \mathcal{R}(A) + \dim \mathcal{N}(A) = n$$
 and $\dim \mathcal{C}(A) + \dim \mathcal{N}(A^T) = m$.

• The Fundamental Theorem says that $\dim \mathcal{R}(A) = \dim \mathcal{C}(A)$. You don't need to prove this. We define

$$\operatorname{rank}(A) := \dim \mathcal{R}(A) = \dim \mathcal{C}(A).$$

- Know that row operations correspond to multiplying EA with E elementary, and column operations correspond to multiplying AF with F elementary. Given a small invertible matrix A, be able to express A as a product of elementary matrices.
- Given specific A, find bases for the four fundamental subspaces. Method: Compute RREF of A. The nonzero rows of the RREF are a basis for $\mathcal{R}(A)$. The pivot columns of the RREF are not a basis for $\mathcal{C}(A)$, but the corresponding columns in A are a basis for $\mathcal{C}(A)$. Alternatively, the nonzero rows of the RREF of A^T are a basis for $\mathcal{C}(A)$. To compute $\mathcal{N}(A)$, suppose that M is the RREF of A. Then $A\mathbf{x} = \mathbf{0}$ and $M\mathbf{x} = \mathbf{0}$ have the same solutions. The solutions of $M\mathbf{x} = \mathbf{0}$ are easy to read off.
- To elaborate a bit on the previous point: Let M be the RREF of A, which is obtained from A by multiplying on the left by elementary matrices: $E_k \cdots E_1 A = M$. Using this fact, show that $A\mathbf{x} = \mathbf{0}$ if and only if $M\mathbf{x} = \mathbf{0}$. (It follows from this that $\mathcal{R}(A) = \mathcal{N}(A)^{\perp} = \mathcal{N}(M)^{\perp} = \mathcal{R}(M)$, which is why the nonzero rows of M give a basis for $\mathcal{R}(A)$.)
- Know criteria for the existence of inverses. Given an $m \times n$ matrix A:

- -A has a left inverse if and only if rank(A) = n.
- -A has a right inverse if and only if rank(A) = m.
- If A is not square then left (right) inverses are not unique.
- $-A^{-1}$ exists if and only if $m = n = \operatorname{rank}(A)$.
- Two-sided inverses are unique.

Be able to compute one-sided and two-sided inverses for small matrices.

• A linear system $A\mathbf{x} = \mathbf{b}$ has a solution if and only if $\mathbf{b} \in \mathcal{C}(A)$, in which case the solution has the form

$$\mathbf{x}' + \mathcal{N}(A) = \{\mathbf{x}' + \mathbf{x} : \mathbf{x} \in \mathcal{N}(A)\}.$$

If A has independent columns then $\mathcal{N}(A) = \{\mathbf{0}\}$ so the solution is a single point.

- Compute the solution of a small linear system.
- Use the trick $\mathbf{x}^T A^T A \mathbf{x} = ||A\mathbf{x}||^2$ to prove that $\mathcal{N}(A^T A) = \mathcal{N}(A)$. One direction: If $A\mathbf{x} = \mathbf{0}$ then $A^T A \mathbf{x} = A^T \mathbf{0} = \mathbf{0}$. Other direction: If $A^T A \mathbf{x} = \mathbf{0}$ then $||A\mathbf{x}||^2 = \mathbf{x}^T A^T A \mathbf{x} = \mathbf{x}^T \mathbf{0} = \mathbf{0}$. But $||A\mathbf{x}||^2 = 0$ implies $A\mathbf{x} = 0$ by properties of norms.
- For any matrix A, the matrix $A^T A$ is square and symmetric.
- If A has independent columns, show that $A^T A$ also has independent columns, hence $(A^T A)^{-1}$ exists. Do the same for AA^T when A has independent rows.
- If $A\mathbf{x} = \mathbf{b}$ has no solution, multiply both sides on the left by $A^T A \mathbf{x} = A^T \mathbf{b}$. The new system always has solutions, and these solutions minimize $||A\mathbf{x} \mathbf{b}||$. If A has independent columns then the least-squares solution is unique:

$$A^{T}A\mathbf{x} = A^{T}\mathbf{b}$$
$$\mathbf{x} = (A^{T}A)^{-1}A^{T}\mathbf{b}$$

- Solve a small least squares problem, such as fitting a line to three data points, or finding the distance between skew lines in \mathbb{R}^3 .
- **Projection.** Let $P\mathbf{x}$ be the projection of \mathbf{x} onto $\mathcal{C}(A)$. Since $P\mathbf{x}$ is in $\mathcal{C}(A)$ we must have $P\mathbf{x} = A\hat{\mathbf{x}}$ for some $\hat{\mathbf{x}}$. We also know that $P\mathbf{x} \mathbf{x}$ is orthogonal to $\mathcal{C}(A)$, which means that $P\mathbf{x} \mathbf{x}$ is orthogonal to every column of A:

$$A^T(P\mathbf{x} - \mathbf{x}) = \mathbf{0}.$$

• Assuming A has independent colums, solve the previous equation to get

$$P = A(A^T A)^{-1} A^T.$$

• In general, P is a projection when $P^2 = P$ and $P^T = P$. If P is a projection show that Q = I - P is also a projection. In fact, P and Q project onto orthogonal subspaces. This sometimes gives a shortcut to compute P. For example, let P be the projection onto the plane ax + by + cz = 0. Then I - P projects onto the line generated by (a, b, c):

$$I - P = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \begin{bmatrix} (a \ b \ c) \begin{pmatrix} a \\ b \\ c \end{pmatrix} \end{bmatrix}^{-1} \begin{pmatrix} a \ b \ c \end{pmatrix}$$
$$= \frac{1}{a^2 + b^2 + c^2} \begin{pmatrix} a^2 \ ab \ ac \\ ab \ b^2 \ bc \\ ac \ bc \ c^2 \end{pmatrix}.$$

- State the definition of k-linear forms. Know that every 1-linear form looks like $\varphi_{\mathbf{b}}(\mathbf{x}) = \mathbf{b}^T \mathbf{x}$ for a vector **b**. Know that every 2-linear form looks like $\varphi_B(\mathbf{x}, \mathbf{y}) = \mathbf{x}^T B \mathbf{y}$ for a square matrix B.
- Relate properties of the function φ_B to properties of the matrix B:
 - -B = C if and only if $\varphi_B(\mathbf{x}, \mathbf{y}) = \varphi_C(\mathbf{x}, \mathbf{y})$ for all \mathbf{x}, \mathbf{y} .
 - $-B^T = B$ if and only if $\varphi_B(\mathbf{x}, \mathbf{y}) = \varphi_B(\mathbf{y}, \mathbf{x})$ for all \mathbf{x}, \mathbf{y} .
 - If $B = A^T A$ then $\varphi_B(\mathbf{x}, \mathbf{x}) \ge 0$ for all \mathbf{x} .
 - If $B = A^T A$ and A has independent columns then $\varphi_B(\mathbf{x}, \mathbf{x}) = 0$ implies $\mathbf{x} = \mathbf{0}$.
- Write a given polynomial $f(\mathbf{x})$ of degree 2 in the form $f(\mathbf{x}) = b + \mathbf{b}^T \mathbf{x} + \mathbf{x}^T B \mathbf{x}$ for some scalar b, vector **b** and symmetric matrix B.
- Use Laplace expansion or some other method to compute small determinants.
- Know that A^{-1} exists if and only if $det(A) \neq 0$.
- Know the formulas
 - $\det(A^T) = \det(A)$
 - $\det(AB) = \det(A)\det(B)$
 - $\det(A^{-1}) = 1/\det(A).$
- If A is square, prove that $\sqrt{\det(A^T A)} = |\det(A)|$.
- If A is $n \times k$, know that $\sqrt{\det(A^T A)}$ is the k-volume of the k-parallelogram in \mathbb{R}^n generated by the columns of A.