- State the definitions of row space, column space, nullspace. It is important to know that

$$
\mathcal{C}(A)=\text { all vectors of the form } A \mathbf{x},
$$

and

$$
A \mathrm{x}=\mathbf{0} \quad \Longleftrightarrow \mathrm{x} \text { is orthogonal to every row of } A
$$

- The previous observation says that $\mathcal{N}(A)=\mathcal{R}(A)^{\perp}$. In general, if $U \subseteq V$ is a subspace of an inner product space V then we define

$$
U^{\perp}=\{\mathbf{v} \in V:\langle\mathbf{u}, \mathbf{v}\rangle=0 \text { for all } \mathbf{u} \in U\}
$$

If V is finite dimensional, then you should know (but you don't need to prove) that

$$
\operatorname{dim} U+\operatorname{dim} U^{\perp}=\operatorname{dim} V
$$

- If A is $m \times n$ then $\mathcal{R}(A)$ and $\mathcal{N}(A)$ are subspaces of \mathbb{R}^{n}, while $\mathcal{C}(A)$ and $\mathcal{N}\left(A^{T}\right)$ are subspaces of \mathbb{R}^{m}. It follows from the previous fact that

$$
\operatorname{dim} \mathcal{R}(A)+\operatorname{dim} \mathcal{N}(A)=n \quad \text { and } \quad \operatorname{dim} \mathcal{C}(A)+\operatorname{dim} \mathcal{N}\left(A^{T}\right)=m
$$

- The Fundamental Theorem says that $\operatorname{dim} \mathcal{R}(A)=\operatorname{dim} \mathcal{C}(A)$. You don't need to prove this. We define

$$
\operatorname{rank}(A):=\operatorname{dim} \mathcal{R}(A)=\operatorname{dim} \mathcal{C}(A) .
$$

- Know that row operations correspond to multiplying $E A$ with E elementary, and column operations correspond to multiplying $A F$ with F elementary. Given a small invertible matrix A, be able to express A as a product of elementary matrices.
- Given specific A, find bases for the four fundamental subspaces. Method: Compute RREF of A. The nonzero rows of the RREF are a basis for $\mathcal{R}(A)$. The pivot columns of the RREF are not a basis for $\mathcal{C}(A)$, but the corresponding columns in A are a basis for $\mathcal{C}(A)$. Alternatively, the nonzero rows of the RREF of A^{T} are a basis for $\mathcal{C}(A)$. To compute $\mathcal{N}(A)$, suppose that M is the RREF of A. Then $A \mathbf{x}=\mathbf{0}$ and $M \mathbf{x}=\mathbf{0}$ have the same solutions. The solutions of $M \mathrm{x}=\mathbf{0}$ are easy to read off.
- To elaborate a bit on the previous point: Let M be the RREF of A, which is obtained from A by multiplying on the left by elementary matrices: $E_{k} \cdots E_{1} A=M$. Using this fact, show that $A \mathbf{x}=\mathbf{0}$ if and only if $M \mathbf{x}=\mathbf{0}$. (It follows from this that $\mathcal{R}(A)=$ $\mathcal{N}(A)^{\perp}=\mathcal{N}(M)^{\perp}=\mathcal{R}(M)$, which is why the nonzero rows of M give a basis for $\left.\mathcal{R}(A).\right)$
- Know criteria for the existence of inverses. Given an $m \times n$ matrix A :
- A has a left inverse if and only if $\operatorname{rank}(A)=n$.
- A has a right inverse if and only if $\operatorname{rank}(A)=m$.
- If A is not square then left (right) inverses are not unique.
- A^{-1} exists if and only if $m=n=\operatorname{rank}(A)$.
- Two-sided inverses are unique.

Be able to compute one-sided and two-sided inverses for small matrices.

- A linear system $A \mathbf{x}=\mathbf{b}$ has a solution if and only if $\mathbf{b} \in \mathcal{C}(A)$, in which case the solution has the form

$$
\mathbf{x}^{\prime}+\mathcal{N}(A)=\left\{\mathbf{x}^{\prime}+\mathbf{x}: \mathbf{x} \in \mathcal{N}(A)\right\}
$$

If A has independent columns then $\mathcal{N}(A)=\{\mathbf{0}\}$ so the solution is a single point.

- Compute the solution of a small linear system.
- Use the trick $\mathbf{x}^{T} A^{T} A \mathbf{x}=\|A \mathbf{x}\|^{2}$ to prove that $\mathcal{N}\left(A^{T} A\right)=\mathcal{N}(A)$. One direction: If $A \mathbf{x}=\mathbf{0}$ then $A^{T} A \mathbf{x}=A^{T} \mathbf{0}=\mathbf{0}$. Other direction: If $A^{T} A \mathbf{x}=\mathbf{0}$ then $\|A \mathbf{x}\|^{2}=$ $\mathbf{x}^{T} A^{T} A \mathbf{x}=\mathbf{x}^{T} \mathbf{0}=\mathbf{0}$. But $\|A \mathbf{x}\|^{2}=0$ implies $A \mathbf{x}=0$ by properties of norms.
- For any matrix A, the matrix $A^{T} A$ is square and symmetric.
- If A has independent columns, show that $A^{T} A$ also has independent columns, hence $\left(A^{T} A\right)^{-1}$ exists. Do the same for $A A^{T}$ when A has independent rows.
- If $A \mathbf{x}=\mathbf{b}$ has no solution, multiply both sides on the left by $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$. The new system always has solutions, and these solutions minimize $\|A \mathbf{x}-\mathbf{b}\|$. If A has independent columns then the least-squares solution is unique:

$$
\begin{aligned}
A^{T} A \mathbf{x} & =A^{T} \mathbf{b} \\
\mathbf{x} & =\left(A^{T} A\right)^{-1} A^{T} \mathbf{b} .
\end{aligned}
$$

- Solve a small least squares problem, such as fitting a line to three data points, or finding the distance between skew lines in \mathbb{R}^{3}.
- Projection. Let $P \mathbf{x}$ be the projection of \mathbf{x} onto $\mathcal{C}(A)$. Since $P \mathbf{x}$ is in $\mathcal{C}(A)$ we must have $P \mathbf{x}=A \hat{\mathbf{x}}$ for some $\hat{\mathbf{x}}$. We also know that $P \mathbf{x}-\mathbf{x}$ is orthogonal to $\mathcal{C}(A)$, which means that $P \mathbf{x}-\mathbf{x}$ is orthogonal to every column of A :

$$
A^{T}(P \mathbf{x}-\mathbf{x})=\mathbf{0}
$$

- Assuming A has independent colums, solve the previous equation to get

$$
P=A\left(A^{T} A\right)^{-1} A^{T} .
$$

- In general, P is a projection when $P^{2}=P$ and $P^{T}=P$. If P is a projection show that $Q=I-P$ is also a projection. In fact, P and Q project onto orthogonal subspaces. This sometimes gives a shortcut to compute P. For example, let P be the projection onto the plane $a x+b y+c z=0$. Then $I-P$ projects onto the line generated by (a, b, c) :

$$
\begin{aligned}
I-P & \left.=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\left[\begin{array}{lll}
a & b & c
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right]^{-1}\left(\begin{array}{lll}
a & b & c
\end{array}\right) \\
& =\frac{1}{a^{2}+b^{2}+c^{2}}\left(\begin{array}{lll}
a^{2} & a b & a c \\
a b & b^{2} & b c \\
a c & b c & c^{2}
\end{array}\right) .
\end{aligned}
$$

- State the definition of k-linear forms. Know that every 1-linear form looks like $\varphi_{\mathbf{b}}(\mathbf{x})=$ $\mathbf{b}^{T} \mathbf{x}$ for a vector \mathbf{b}. Know that every 2-linear form looks like $\varphi_{B}(\mathbf{x}, \mathbf{y})=\mathbf{x}^{T} B \mathbf{y}$ for a square matrix B.
- Relate properties of the function φ_{B} to properties of the matrix B :
$-B=C$ if and only if $\varphi_{B}(\mathbf{x}, \mathbf{y})=\varphi_{C}(\mathbf{x}, \mathbf{y})$ for all \mathbf{x}, \mathbf{y}.
$-B^{T}=B$ if and only if $\varphi_{B}(\mathbf{x}, \mathbf{y})=\varphi_{B}(\mathbf{y}, \mathbf{x})$ for all \mathbf{x}, \mathbf{y}.
- If $B=A^{T} A$ then $\varphi_{B}(\mathbf{x}, \mathbf{x}) \geq 0$ for all \mathbf{x}.
- If $B=A^{T} A$ and A has independent columns then $\varphi_{B}(\mathbf{x}, \mathbf{x})=0$ implies $\mathbf{x}=\mathbf{0}$.
- Write a given polynomial $f(\mathbf{x})$ of degree 2 in the form $f(\mathbf{x})=b+\mathbf{b}^{T} \mathbf{x}+\mathbf{x}^{T} B \mathbf{x}$ for some scalar b, vector \mathbf{b} and symmetric matrix B.
- Use Laplace expansion or some other method to compute small determinants.
- Know that A^{-1} exists if and only if $\operatorname{det}(A) \neq 0$.
- Know the formulas
$-\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$
$-\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
$-\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det}(A)$.
- If A is square, prove that $\sqrt{\operatorname{det}\left(A^{T} A\right)}=|\operatorname{det}(A)|$.
- If A is $n \times k$, know that $\sqrt{\operatorname{det}\left(A^{T} A\right)}$ is the k-volume of the k-parallelogram in \mathbb{R}^{n} generated by the columns of A.

