No electronic devices are allowed. There are 4 pages and each page is worth 6 points, for a total of 24 points.

1. Inner Products. Let V be a real inner product space with norm $\|\mathbf{v}\|=\sqrt{\langle\mathbf{v}, \mathbf{v}\rangle}$.
(a) Suppose that vectors $\mathbf{u}, \mathbf{v} \in V$ satisfy $\langle\mathbf{u}, \mathbf{u}\rangle=2,\langle\mathbf{v}, \mathbf{v}\rangle=3$ and $\langle\mathbf{u}, \mathbf{v}\rangle=2$. Use this information to compute the distance $\|\mathbf{u}-\mathbf{v}\|$.

We have

$$
\begin{aligned}
\|\mathbf{u}-\mathbf{v}\|^{2} & =\langle\mathbf{u}-\mathbf{v}, \mathbf{u}-\mathbf{v}\rangle \\
& =\langle\mathbf{u}, \mathbf{u}\rangle-2\langle\mathbf{u}, \mathbf{v}\rangle+\langle\mathbf{v}, \mathbf{v}\rangle \\
& =2-2 \cdot 2+3 \\
& =1
\end{aligned}
$$

and hence $\|\mathbf{u}-\mathbf{v}\|=1$.
(b) Suppose that vectors $\mathbf{x}, \mathbf{y} \in V$ satisfy $\|\mathbf{x}\|=\|\mathbf{y}\|$. In this case prove that vectors $\mathbf{x}+\mathbf{y}$ and $\mathbf{x}-\mathbf{y}$ are orthogonal, i.e., that their inner product is zero.

Assuming that $\|\mathbf{x}\|=\|\mathbf{y}\|$, the inner product of $\mathbf{x}+\mathbf{y}$ and $\mathbf{x}-\mathbf{y}$ is

$$
\begin{aligned}
\langle\mathbf{x}+\mathbf{y}, \mathbf{x}-\mathbf{y}\rangle & =\langle\mathbf{x}, \mathbf{x}\rangle-\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{x}, \mathbf{y}\rangle-\langle\mathbf{y}, \mathbf{y}\rangle \\
& =\langle\mathbf{x}, \mathbf{x}\rangle-\langle\mathbf{y}, \mathbf{y}\rangle \\
& =\|\mathbf{x}\|^{2}-\sharp \mathbf{y} \|^{2} \\
& =0 .
\end{aligned}
$$

Example: In Euclidean space, the diagonals of a rhombus are perpendicular.

2. Linear Functions. Let - denote the dot product on \mathbb{R}^{3}. Given the column vector $\mathbf{a}=(1,2,3) \in \mathbb{R}^{3}$, we define the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by $f(\mathbf{x})=(\mathbf{a} \bullet \mathbf{x}) \mathbf{a}$.
(a) Prove that the function f is linear.

For all vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{3}$ and scalars $c_{1}, \ldots, c_{n} \in \mathbb{R}$, the properties of dot product and scalar multiplication give

$$
\begin{aligned}
f\left(c_{1} \mathbf{x}_{1}+\cdots+c_{n} \mathbf{x}_{n}\right) & =\left(\mathbf{a} \bullet\left(c_{1} \mathbf{x}_{1}+\cdots+c_{n} \mathbf{x}_{n}\right)\right) \mathbf{a} \\
& =\left(c_{1} \mathbf{a} \bullet \mathbf{x}_{1}+\cdots+c_{n} \mathbf{a} \bullet \mathbf{x}_{n}\right) \mathbf{a} \\
& =c_{1}\left(\mathbf{a} \bullet \mathbf{x}_{1}\right) \mathbf{a}+\cdots+c_{n}\left(\mathbf{a} \bullet \mathbf{x}_{n}\right) \mathbf{a} \\
& =c_{1} f\left(\mathbf{x}_{1}\right)+\cdots+c_{n} f\left(\mathbf{x}_{n}\right) .
\end{aligned}
$$

(b) Find the associated 3×3 matrix $[f]$.

It follows from part (a) that the function f can be represented as a 3×3 matrix. There are two ways to find this matrix.

Direct Way. Recall that the j th column of the matrix $[f]$ is defined to be $f\left(\mathbf{e}_{j}\right)$. In our case we have

$$
f\left(\mathbf{e}_{1}\right)=\left(\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \bullet\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right)\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=1\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

and

$$
f\left(\mathbf{e}_{1}\right)=\left(\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \bullet\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right)\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=2\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{l}
2 \\
4 \\
6
\end{array}\right)
$$

and

$$
f\left(\mathbf{e}_{3}\right)=\left(\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \bullet\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right)\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=3\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{l}
3 \\
6 \\
9
\end{array}\right) .
$$

Hence

$$
[f]=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
f\left(\mathbf{e}_{1}\right) & f\left(\mathbf{e}_{2}\right) & f\left(\mathbf{e}_{3}\right) \\
\mid & \mid & \mid
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6 \\
3 & 6 & 9
\end{array}\right)
$$

Clever Way. For any vector $\mathbf{x} \in \mathbb{R}^{3}$ we have

$$
f(\mathbf{x})=(\mathbf{a} \bullet \mathbf{x}) \mathbf{a}
$$

$$
=\left(\mathbf{a}^{T} \mathbf{x}\right) \mathbf{a} \quad \text { dot product as row times column }
$$

$$
=\mathbf{a}\left(\mathbf{a}^{T} \mathbf{x}\right) \quad \text { scalars commute with vectors }
$$

$$
=\left(\mathbf{a a}^{T}\right) \mathbf{x} . \quad \text { associativity of matrix product }
$$

It follows that

$$
[f]=\mathbf{a a}^{T}=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6 \\
3 & 6 & 9
\end{array}\right) .
$$

[^0]3. Matrix Multiplication. Let A be an $m \times n$ matrix with column vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in$ \mathbb{R}^{m} and let B be any $n \times m$ matrix. Express each answer as a matrix product.

The goal is to think of these computations at the matrix level, not the scalar level.
(a) Give an expression for the $i j$ entry of $A^{T} A$.

$$
\begin{aligned}
\left(i j \text { entry of } A^{T} A\right) & =\left(i \text { th row of } A^{T}\right)(j \text { th column of } A) \\
& =(i \text { th column of } A)^{T}(j \text { th column of } A) \\
& =\mathbf{a}_{i}^{T} \mathbf{a}_{j} .
\end{aligned}
$$

(b) Give an expression for the j th column of $B A$.

$$
(j \text { th column of } B)=B(j \text { th column of } A)=B \mathbf{a}_{j}
$$

(c) Give an expression for the $i j$ entry of $(B A)^{T}(B A)$. [Hint: Combine (a) and (b).]

$$
\begin{aligned}
\left(i j \text { entry of }(B A)^{T}(B A)\right) & =\left(i \text { th row of }(B A)^{T}\right)(j \text { th column of } B A) \\
& =(i \text { th column of } B A)^{T}(j \text { th column of } B A) \\
& =\left(B \mathbf{a}_{i}\right)^{T}\left(B \mathbf{a}_{j}\right) \\
& =\mathbf{a}_{i}^{T} B^{T} B \mathbf{a}_{j} .
\end{aligned}
$$

4. Symmetric Matrices. We say that a (square) matrix S is symmetric when $S^{T}=S$. We say that S is antisymmetric when $S^{T}=-S$.
(a) For any matrix A (possibly non-square), prove that $S=A^{T} A$ is symmetric.

$$
S^{T}=\left(A^{T} A\right)^{T}=A^{T}\left(A^{T}\right)^{T}=A^{T} A=S
$$

(b) Prove that any square matrix A is a sum of a symmetric and an antisymmetric matrix. [Hint: Consider the matrices $A+A^{T}$ and $A-A^{T}$.]

We observe that $A+A^{T}$ is symmetric:

$$
\left(A+A^{T}\right)^{T}=A^{T}+\left(A^{T}\right)^{T}=A^{T}+A=A+A^{T} .
$$

While $A-A^{T}$ is antisymmetric:

$$
\left(A-A^{T}\right)^{T}=A^{T}-\left(A^{T}\right)^{T}=A^{T}-A=-\left(A-A^{T}\right)
$$

Scaling these matrices by $1 / 2$ does not change the symmetry or antisymmetry, hence we can express A as a sum of a symmetric and antisymmetric matrix:

$$
A=\frac{1}{2}\left(A+A^{T}\right)+\frac{1}{2}\left(A-A^{T}\right)
$$

[^0]: ${ }^{1}$ We have shown that $[f] \mathbf{x}=\left(\mathbf{a a}^{T}\right) \mathbf{x}$ for all vectors $\mathbf{x} \in \mathbb{R}^{3}$. In particular, this implies that the j th columns are the same: $[f] \mathbf{e}_{j}=\left(\mathbf{a a}^{T}\right) \mathbf{x}$. Hence the matrices are the same $[f]=\mathbf{a a}^{T}$.

