
Math 510/610 Exam 1
Fall 2022 Fri Sept 30

No electronic devices are allowed. There are 4 pages and each page is worth 6 points, for
a total of 24 points.

1. Inner Products. Let V be a real inner product space with norm ‖v‖ =
√
〈v,v〉.

(a) Suppose that vectors u,v ∈ V satisfy 〈u,u〉 = 2, 〈v,v〉 = 3 and 〈u,v〉 = 2. Use
this information to compute the distance ‖u− v‖.

We have

‖u− v‖2 = 〈u− v,u− v〉
= 〈u,u〉 − 2〈u,v〉+ 〈v,v〉
= 2− 2 · 2 + 3

= 1,

and hence ‖u− v‖ = 1.

(b) Suppose that vectors x,y ∈ V satisfy ‖x‖ = ‖y‖. In this case prove that vectors
x + y and x− y are orthogonal, i.e., that their inner product is zero.

Assuming that ‖x‖ = ‖y‖, the inner product of x + y and x− y is

〈x + y,x− y〉 = 〈x,x〉 −���〈x,y〉+���〈x,y〉 − 〈y,y〉
= 〈x,x〉 − 〈y,y〉
= �

��‖x‖2 −���‖y‖2

= 0.

Example: In Euclidean space, the diagonals of a rhombus are perpendicular.

2. Linear Functions. Let • denote the dot product on R3. Given the column vector
a = (1, 2, 3) ∈ R3, we define the function f : R3 → R3 by f(x) = (a • x)a.



(a) Prove that the function f is linear.

For all vectors x1, . . . ,xn ∈ R3 and scalars c1, . . . , cn ∈ R, the properties of dot
product and scalar multiplication give

f(c1x1 + · · ·+ cnxn) = (a • (c1x1 + · · ·+ cnxn))a

= (c1a • x1 + · · ·+ cna • xn)a

= c1(a • x1)a + · · ·+ cn(a • xn)a

= c1f(x1) + · · ·+ cnf(xn).

(b) Find the associated 3× 3 matrix [f ].

It follows from part (a) that the function f can be represented as a 3 × 3 matrix.
There are two ways to find this matrix.

Direct Way. Recall that the jth column of the matrix [f ] is defined to be f(ej).
In our case we have
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Hence

[f ] =

 | | |
f(e1) f(e2) f(e3)
| | |

 =

1 2 3
2 4 6
3 6 9

 .

Clever Way. For any vector x ∈ R3 we have

f(x) = (a • x)a

= (aTx)a dot product as row times column

= a(aTx) scalars commute with vectors

= (aaT )x. associativity of matrix product

It follows that1

[f ] = aaT =
(
1 2 3

)1
2
3

 =

1 2 3
2 4 6
3 6 9

 .

1We have shown that [f ]x = (aaT )x for all vectors x ∈ R3. In particular, this implies that the jth
columns are the same: [f ]ej = (aaT )x. Hence the matrices are the same [f ] = aaT .



3. Matrix Multiplication. Let A be an m×n matrix with column vectors a1, . . . ,an ∈
Rm and let B be any n×m matrix. Express each answer as a matrix product.

The goal is to think of these computations at the matrix level, not the scalar level.

(a) Give an expression for the ij entry of ATA.

(ij entry of ATA) = (ith row of AT )(jth column of A)

= (ith column of A)T (jth column of A)

= aTi aj .

(b) Give an expression for the jth column of BA.

(jth column of B) = B(jth column of A) = Baj .

(c) Give an expression for the ij entry of (BA)T (BA). [Hint: Combine (a) and (b).]

(ij entry of (BA)T (BA)) = (ith row of (BA)T )(jth column of BA)

= (ith column of BA)T (jth column of BA)

= (Bai)
T (Baj)

= aTi B
TBaj .

4. Symmetric Matrices. We say that a (square) matrix S is symmetric when ST = S.
We say that S is antisymmetric when ST = −S.

(a) For any matrix A (possibly non-square), prove that S = ATA is symmetric.

ST = (ATA)T = AT (AT )T = ATA = S.

(b) Prove that any square matrix A is a sum of a symmetric and an antisymmetric
matrix. [Hint: Consider the matrices A + AT and A−AT .]

We observe that A + AT is symmetric:

(A + AT )T = AT + (AT )T = AT + A = A + AT .

While A−AT is antisymmetric:

(A−AT )T = AT − (AT )T = AT −A = −(A−AT ).

Scaling these matrices by 1/2 does not change the symmetry or antisymmetry,
hence we can express A as a sum of a symmetric and an antisymmetric matrix:

A =
1

2
(A + AT ) +

1

2
(A−AT ).


