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Introduction

The main problem of number theory is the solution of Diophantine equations. These are
polynomial equations in two or more unknowns, in which only whole number solutions are
accepted. For example, consider the Diophantine equation

x2 ` y2 “ z2.

We will see later that the complete solution to this equation is given by

px, y, zq “ d ¨
`

v2 ´ u2, 2uv, v2 ` u2
˘

or d ¨
`

2uv, v2 ´ u2, v2 ` u2
˘

,

where d, u, v are whole numbers and where u and v have no common factors. The solution
of this problem goes back to Diophantus of Alexandria in the 3rd century AD. On the other
hand, the famous Fermat’s Last Theorem says that the Diophantine equation

xn ` yn “ zn with n ě 3

has no solutions other than px, y, zq “ p0, 0, 0q. This result was first conjectured by Fermat
in the early 1600s and was finally proved by Wiles and Taylor in 1993. In other words:

number theory is hard.

Therefore we must limit our ambitious. In this course I will use the two easiest kinds of
Diophantine equations in order to motivate the basic concepts of the subject. We will begin
with the general linear Diophantine equation in two unknowns:

ax` by “ c.

The main concepts involved in the solution are the greatest common divisor and the Eu-
clidean algorithm. Then we will generalize the discussion to systems of linear Diophantine
equations. These can be completely solved with a bit of linear algebra and a generalization of
the Euclidean algorithm, called the Smith Normal Form. Geometrically, this problem can be
described as follows:

Find all integer points on a given line, plane, etc.

Next we will turn our attention to the general quadratic Diophantine equation in two unknowns:

ax2 ` bxy ` cy2 ` dx` ey ` f “ 0.
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Geometrically, this is the equation of a conic section in the plane. As with the linear case,
this problem is completely understood. However, unlike the linear case, the problem can be
solved at two different levels of difficulty:

(1) Find all rational points on a given conic section.

(2) Find all integer points on a given conic section.

We will begin with the easier problem of finding all rational points. For this it is only necessary
to find one point or to prove that none exist. The main theorem here is called Legendre’s
Theorem, which is stated in terms quadratic residues. To prepare for this we will first make
a thorough study of modular arithmetic and prime factorization. Then we will develop the
famous theorem on quadratic reciprocity, and finally prove Legendre’s theorem.

Then we will turn to the harder problem of classifying integer points on conic sections. First
we note that the general equation can be reduced (via some tricky manipulations) to the case
of Pell’s equation:

x2 ´ dy2 “ 1.

BLAH

Say a few words about quadratic equations in more than two variables and equations of degree
n ě 3 in two variables. Special case of elliptic curves. Hilbert’s 10th problem.

Rational points on folium of Descartes (singular cubic).
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1 What is a Number?

The goal of this chapter is to give a formal definition of the basic number systems:

N “ t0, 1, 2, . . .u Ď Z “ t. . . ,´2,´1, 0, 1, 2, . . .u Ď Q “ ta{b : a, b P Z, b ‰ 0u.

Since 1930, mathematicians tend to begin textbooks with some extremely obvious definitions.
This is in line with the twentieth-century (formalist) philosophy that mathematical objects
do not exist independent of their formal definitions. The goal is to get through the formal
definitions as quickly as possible without boring the students too much. Normally I would
skip this part. But this is a small class with serious students; I think you can handle it.

We will begin with a formal definition of the “natural numbers”: 0, 1, 2, . . .. These are equipped
with two algebraic operations `,ˆ and an order relation ă, which satisfy certain basic prop-
erties. However, it is a surprising fact, discovered in the 1880s by Dedekind and Peano, that
the true essence of the natural numbers is the principle of induction.

1.1 Natural Numbers

There are million equivalent ways to define the natural numbers I will give the most popular
definition, due to Peano (and called Peano arithmetic), which is based on logic and set theory.
Let N be a set equipped with an equivalence relation ““” and a “successor” function σ : NÑ N
satisfying the following four properties:
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(P1) There exists a special element called 0 P N.

(P2) The element 0 is not the successor of any number, i.e.,

@n P N, σpnq ‰ 0.

(P3) Every number has a unique successor, i.e.,

@m,n P N, pσpmq “ σpnqq ñ pm “ nq.

(P4) The Induction Principle. If a set of natural numbers S Ď N contains 0 and is closed
under succession, then we must have S “ N. In other words, if we have

– 0 P S,

– @n P N, pn P Sq ñ pσpnq P Sq,

then it follows that S “ N.

///

I’ll admit that this definition doesn’t look much like the integers we know and love. For
example, where are the arithmetic operations of addition and multiplication? It turns out
that these structures are inherent in the Peano axioms but it takes some work to get them
out. First we define the number 1 as the successor of 0:

1 :“ σp0q.

Then for all a P N we define the number “a` n” by recursion:

"

a` 0 :“ 0
a` σpnq :“ σpa` nq for all n P N.

As a special case, note that a ` 1 “ σpaq, which makes sense. Next we define multiplication
by recursion:

"

a0 :“ 0
aσpnq :“ an` a for all n P N.

As as special case, note that a ¨1 “ a, which makes sense. Finally, we define the order relation
by saying that “a ă b” if and only if there exists a nonzero natural number such that a`n “ b:

a ă b ô Dn P N, a` n “ b.

Based on these definitions, we can use repeated induction to prove that the operations `, ¨
and the relation ă satisfy all of the expected properties. The process is quite involved so I
will just show you one example.

Associativity of Addition. For all a, b, c P N I claim that a` pb` cq “ pa` bq ` c.
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Proof: Fix a, b P N and let S Ď N be the set of natural numbers n P N such that a`pb`nq “
pa` bq ` n. We first note that 0 P S because

a` pb` 0q “ a` b “ pa` bq ` 0.

Now assume for induction that we have n P S and hence a ` pb ` nq “ pa ` bq ` n for some
n P N. It follows from the definition of addition that

a` pb` σpnqq “ a` σpb` nq

“ σpa` pb` nqq

“ σppa` bq ` nq

“ pa` bq ` σpnq,

and hence σpnq.

In a previous semester I forced my students to prove several more properties. You should be
able to find the solutions on my webpage somewhere. Warning: It is surprisingly difficult to
prove that ab “ ba for all a, b P N.

1.2 Integers

Having constructed the system of natural numbers pN,`, ¨, 0, 1,ăq we will now move on to
the integers. The key idea is to define an integer as an equivalence class of ordered pairs of
natural numbers. To be specific, for all a, b P N we will think of the ordered pair ra, bs P N2 as
a fictional number “a´ b.” Based on this intuition we define the following relation on the set
of ordered pairs:

ra, bs “ rc, ds ô a` d “ b` c.

One can check that this relation is an equivalence:

• ra, bs “ ra, bs (reflexive)

• ra, bs “ rc, ds implies rc, ds “ ra, bs (symmetric)

• ra, bs “ rc, ds and rc, ds “ re, f s imply ra, bs “ re, f s (transitive)

Then we define the integers as the set of equivalence classes of ordered pairs:

Z “ N2{ „ .

And we will identify each natural number n P N with the class rn, 0s P Z. One should check
that the operations `, ¨ and the relation ă can be extended from N to Z as follows:

ra, bs ` rc, ds :“ ra` c, b` ds,

ra, bs ¨ rc, ds :“ rac` bd, ad` bcs,

ra, bs ă rc, ds ô a` d ă b` c.
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Furthermore, one should check that the following “subtraction” operator is well-defined:

ra, bs ´ rc, ds :“ ra` d, b` cs.

It follows from this that every integer can be expressed as a difference of natural numbers,

ra, bs “ ra, 0s ´ rb, 0s,

which was the whole point of the exercise. Having done all this, we will abuse notation by
referring to integers by single letters, some of which are real (non-negative) and some of which
are imaginary (negative).

Alternatively,

BLAH BLAH BLAH

• an equivalence relation ““” defined by

– @ a P Z, a “ a (reflexive)

– @ a, b P Z, pa “ bq ñ pb “ aq (symmetric)

– @ a, b, c P Z, pa “ b ^ b “ cq ñ pa “ cq (transitive),

• a a strict total order “ă” defined by

– @ a, b, c P Z, pa ă b ^ b ă cq ñ pa ă cq (transitive)

– @ a, b P Z, exactly one of the following is true (trichotomy):

a ă b or a “ b or b ă a.

• and two binary operations

– @ a, b P Z, D a` b P Z (addition)

– @ a, b P Z, D ab P Z (multiplication)

– @a, b, c P Z, pa “ bq ñ pa` c “ b` c ^ ac “ bcq (substitution)

which satisfy the following twelve properties:

Axioms of Addition.

(A1) @ a, b P Z, a` b “ b` a (commutative)

(A2) @ a, b, c P Z, a` pb` cq “ pa` bq ` c (associative)

(A3) D 0 P Z, @a P Z, 0` a “ a (additive identity exists)

(A4) @ a P Z, D b P Z, a` b “ 0 (additive inverses exist)
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These four properties tell us that Z is an additive group. It has a special element called 0 that
acts as an “identity element” for addition, and every integer a has an “additive inverse”. If b
and c are two such additive inverses then by applying axioms (A1)–(A3) we obtain

b “ b` 0 “ b` pa` cq “ pb` aq ` c “ 0` c “ c.

Thus additive inverses are unique; we will denote the additive inverse of a by “´a.”

Axioms of Multiplication.

(M1) @ a, b P Z, ab “ ba (commutative)

(M2) @ a, b, c P Z, apbcq “ pabqc (associative)

(M3) D 1 P Zz0,@ a P Z, 1a “ a (multiplicative identity exists)

Notice that elements of Z do not have “multiplicative inverses”. That is, we can’t divide in
Z. So Z is not quite a group under multiplication. We also need to say how addition and
multiplication behave together.

Axiom of Distribution.

(D) @ a, b, c P Z, apb` cq “ ab` ac

We can paraphrase these first eight properties by saying that Z is a (commutative) ring. Next
we will describe how arithmetic and order interact.

Axioms of Order.

(O1) @ a, b, c P Z, pa ă bq ñ pa` c ă b` cq

(O2) @ a, b, c P Z, pa ă b ^ 0 ă cq ñ pac ă bcq

(O3) 0 ă 1

These first eleven properties tell us that Z is an ordered ring. However, we have not yet defined
Z because there exist other ordered rings, for example the real numbers R. To distinguish
Z among the ordered rings we need one final axiom. This last axioms is equivalent to the
Induction Principle but we will state it in a more convenient way.

The Well-Ordering Principle.

Let S Ď Z be any non-empty set of integers that is bounded below. That is, assume that there
exists some s P S and assume that there exists some b P Z such that we have b ď s for all
s P S. In this case we conclude that the set S contains a least element, i.e., an element
` P S such that ` ď s for all s P S. Formally, we have the following:

(WO) @S P ℘pNqzH, D ` P S, @ s P S, ` ď s

You can see from the formal statement that this axioms is logically the most complicated.
It took quite a while for people to realize that this is an axiom and not a theorem. This
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was essentially the contribution of Giuseppe Peano in 1889, following earlier work of Richard
Dedekind. ///

1.3 Rational Numbers

2 The Equation ax` by “ c

As mentioned in the introduction, the central problem of number theory is to solve Diophantine
equations. The general problem of Diophantine equations is in some sense impossible, but there
is one case that we understand completely: the case of linear Diophantine equations. In
this chapter I will present the complete solution of linear Diophantine equations and I will use
this as motivation to introduce the basic definitions and algorithms of number theory.

2.1 Division With Remainder

The natural numbers pN,`, 0q are called a commutative monoid because they have a commu-
tative and associative binary operation ` : NˆNÑ N with an identity element 0 P N. We can
formally enlarge this to a commutative group pZ,`, 0q by adjoining “negative numbers” [see
HW1], and this commutative group also carries a commutative monoid structure pZ,ˆ, 1q in
which the multiplication operation ˆ distributes over addition `. Putting all of this together
gives us a commutative ring structure:

pZ,`,ˆ, 0, 1q.

Here the operation ` is invertible (we can subtract) but the operaiton ˆ is not (we can not
divide by an arbitrary integer). [For example, 2 is an integer, but 1{2 is not.] This can be
fixed by formally adjoining multiplicative inverses (called “fractions”), to obtain the system
of rational numbers pQ,`,ˆ, 0, 1q. But we don’t want to do that in this course because it
kills all the interesting properties of number theory.

Instead, we will investigate the subtle properties of “divisibility” for integers.

Definition of Divisibility. Consider two integers a, b P Z. We say that b divides a or that
a is divisible by b if there exists an integer q P Z such that a “ qb, and this case we will write
“b|a.” In symbols, we have

b|a ô Dq P Z, a “ qb.

///

Observe that we have 1|a and a|0 for all a P Z. In other words,

1 divides everything and everything divides 0.
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If b does not divide a we will write b - a. But there is something much more specific we can say
in this case. This is the first “theorem” of number theory on which everything else is based.

Theorem (Division With Remainder). Given integers a, b P Z with b ‰ 0, there exists a
unique pair of integers q, r P Z satisfying the following two simultaneous properties:

"

a “ qb` r
0 ď r ă |b|

We say that q is the quotient and is the remainder of a modulo b. ///

Proof: Consider a, b P Z with b ‰ 0. First we will show that the quotient and remainder
exist. To do this we consider the set of integers of the form a´ nb for various n P Z:

S :“ ta´ qb : q P Zu.

Since b ‰ 0 this set must contain a non-negative integer. So let Sě0 be the subset of S
consisting of its non-negative elements. Since the set Sě0 is not empty, the Well-Ordering
Principle (i.e., the Principle of Induction) says that it has a least element. Let us call this
least element r P Sě0. Since r P S we have by definition that r “ a´ qb for some q P Z. Thus
we have obtained specific integers q, r P Z with the property

a “ qb` r.

Furthermore, since r P Sě0 we know that 0 ď r. It only remains to show that the remainder
satisfies r ă |b|. To prove this, let us assume for contradiction that |b| ď r. Then we have

|b| ď r

|b| ´ |b| ď r ´ |b|

0 ď r ´ |b|.

Then since

r ´ |b| “ pa´ qbq ´ |b|

“ a´ qb´ p˘bq

“ a´ pq ˘ 1qb P S

we conclude that r ´ |b| P Sě0. On the other hand, since b ‰ 0 we have

0 ă |b|

r ă r ` |b|

r ´ |b| ă r,

and thus we have found an element of Sě0 that is smaller than r. This is the desired contra-
diction. ///
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Next we will show that the quotient and remainder of a mod b are unique. To do this, suppose
that we have some integers q1, q2, r1, r2 P Z satisfying the simultaneous properties

"

a “ q1b` r1
0 ď r1 ă |b|

and

"

a “ q2b` r2
0 ď r2 ă |b|

In this case I claim that we must have q1 “ q2 and r1 “ r2. To see this, first observe that the
simultaneous equations

a “ q1b` r1 and a “ q2b` r2

imply that

q1b` r1 “ q2b` r2

q1b´ q2b “ r2 ´ r1

pq1 ´ q2qb “ pr2 ´ r1q.(1)

This equation is certainly true when pq1 ´ q2q “ 0 “ pr2 ´ r1q; we want to show that this is
the only possible solution.

So let us assume for contradiction that pr2 ´ r1q ‰ 0. Since b ‰ 0 we conclude from
equation (2) that pq1 ´ q2q ‰ 0, and then since pq1 ´ q2q is a whole number we conclude that
1 ď |q1 ´ q2|. Now we use equation (2) and the multiplicative property of the absolute value
to obtain

1 ď |q1 ´ q2|

|b| ď |q1 ´ q2||b|

|b| ď |pq1 ´ q2qb|

|b| ď |r2 ´ r1|.(2)

Now I claim that this inequality contradicts the assumptions

0 ď r1 ă |b| and 0 ď r2 ă |b|.

There are two cases to deal with: since pr1 ´ r2q ‰ 0 we must have either r1 ă r2 or r2 ă r1.
For the purpose of this proof we will assume that r1 ă r2 (the proof of the other case is
similar). In this case we have 0 ă pr2 ´ r1q “ |r2 ´ r1| so that the inequality (2) becomes
|b| ď pr2 ´ r1q. Then the assumption 0 ď r1 gives

0 ď r1

´r1 ď 0

|b| ´ r1 ď |b|

and the assumption r2 ă |b| gives

r2 ă |b|

r2 ´ r1 ă |b| ´ r1.
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Putting these together gives pr2 ´ r1q ă p|b| ´ r1q ď |b|, which contradicts (2).

We have shown that pr2 ´ r1q “ 0. Finally, from equation (1) we have

pq1 ´ q2qb “ pr2 ´ r1q “ 0

and then since b ‰ 0 we conclude that pq1 ´ q2q “ 0 as desired.

Remarks:

• I skipped some steps in the proof, mostly involving the absolute value function. It is
formally defined by

|a| :“

#

a if 0 ď a

´a if a ă 0

and then one can prove from the axioms that |ab| “ |a||b| for all a, b P Z.

• In the past I have seen many students write “b|a “ q” when a “ qb. This is wrong. The
symbol “b|a” on the left is not a number; it is a logical statement meaning that there
exists an integer q P Z with the property a “ qb. I advise you to avoid the use of
fractional notation when proving theorems about Z since it can cause confusion.

• The existence part of the proof can also be phrased as an algorithm. In the case that
a ą 0 and b ą 0 we can compute q and r as follows:

pq, rq :“ p0, aq
while r ě b do

q :“ q ` 1
r :“ r ´ b

end do
return pq, rq

For example, suppose that a “ 31 and b “ 7. First we initialize by setting pq, rq “ p0, 31q.
Then since r ě 7 we subtract 7 from r and add 1 to q. Note that these operations preserve
the equation 31 “ 7q ` r. By repeating the process we eventually obtain a value of r
satisfying 0 ď r ă 7:

pq, rq r ě 7 ?

p0, 31q yes
p1, 24q yes
p2, 17q yes
p3, 10q yes
p4, 3q no

We conclude that q “ 4 and r “ 3.

I claimed above that is it generally not possible to divide by an integer (that is, without
introducing the formal concept of “fractions”). Now we can prove it.
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Example. I claim that 2 - 1. In other words, there does not exist an integer n P Z with the
property 2n “ 1. In other other words, there does not exist an integer that deserves to be
called “1{2.”

Proof. Suppose for contradiction that such an integer does exist. This would mean that the
quotient of 1 mod 2 is n and the remainder is zero:

"

1 “ n ¨ 2` 0
0 ď 0 ă |2|

On the other hand, the following two properties are also true:

"

1 “ 0 ¨ 2` 1
0 ď 1 ă |2|

But this says that the quotient of 1 mod 2 is zero and the remainder is 1. Since 0 ‰ 1 this
contradicts the uniqueness of remainders which we proved above.

Now it is time to start solving equations. Here is an easy one.

Problem (Linear Diophantine Equation in One Unknown). Given integers a, b P Z,
find all integers x P Z satisfying

ax “ b.

///

Solution. This equation has a solution if and only if a divides b, i.e., if and only if the
remainder of b mod a is zero. In this case there is a unique solution x P Z, which is the
quotient of b mod a. ///

2.2 Greatest Common Divisor

Okay, now here’s a harder one.

Problem (Linear Diophantine Equation in Two Unknowns). Given integers a, b, c P Z,
find all integers x, y P Z satisfying

(LDE) ax` by “ c.

///

We will work up to the full solution of this problem but it will take some time to get there.
There are a few separate issues involved in the solution:

• Determine whether a solution exists.

• Find one particular solution x, y P Z.

• Classify all possible solutions x, y P Z.
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We’ll first deal with the non-existence of solutions since this is easiest. Suppose that d P Z
is a common divisor of a and b. That is, suppose that there exist integers a1, b1 P Z such that
a “ da1 and b “ db1. Now suppose that the equation (LDE) has a solution, i.e., assume that
there exist integers x, y P Z such that

ax` by “ c.

Then we must have

c “ ax` by

“ pda1qx` pdb1qy

“ dpa1xq ` dpb1yq

“ dpa1x` b1yq,

which implies that d also divides c. ///

Conclusion. If a and b have a common divisor that does not divide c, then (LDE) has no
solution. For example, if a and b are both even (i.e., if they have the common divisor 2) and
if c is odd (i.e., if it is not divisible by 2) then there is no solution.

This suggests that we should investigate the common divisors of a and b in more detail. For
this purpose we will denote the set of all common divisors by

Divpa, bq :“ td P Z : d|a^ d|bu.

If a “ b “ 0 then we have Divpa, bq “ Z (every integer divides zero) which is not very
interesting. So let’s assume that a and b are not both zero.

Theorem/Definition. Given two integers a, b P Z with a, b not both zero, the set Divpa, bq
of common divisors is non-empty and bounded above. Thus, by the Well-Ordering Principle
it must have a greatest element. We call this element the greatest common divisor of a and b,
and we denote it by gcdpa, bq P Divpa, bq. ///

Proof. Without loss of generality, let’s assume that a ‰ 0. Then I claim that each common
divisor d P Divpa, bq satisfies d ď |a|. So consider any d P Divpa, bq. Since d|a and a ‰ 0 we
must have d ‰ 0. Since d|a we also have a “ da1 for some a1 P Z and since a and d are both
nonzero we must have a1 ‰ 0. Then since a1 is a nonzero integer we must have

1 ď |a1|

|d| ď |d||a1|

|d| ď |da1|

|d| ď |a|,
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which implies that d ď |d| ď |a| as desired. We conclude that the set Divpa, bq is bounded
above by |a|. We also know that Divpa, bq is non-empty because 1 P Divpa, bq (1 divides
everything).

The usual statement of the Well-Ordering Principle says that every nonempty set of integers
that is bounded below has a least element. By multiplying everything by ´1 one can show
that this is equivalent to the statement that every non-empty set of integers that is bounded
above has a greatest element. Thus the greatest common divisor exists.

This allows us to be more precise about the solvability of (LDE).

Theorem (Reduction of LDE). Consider integers a, b, c P Z with a, b not both zero and let
d “ gcdpa, bq. If d - c then the equation ax`by “ c has no integer solution x, y P Z. On the
other hand, if d|c then we have integers a1, b1, c1 P Z such that a “ da1, b “ db1, and c “ dc1.
In this case I claim that the integer solutions of ax` by “ c coincide with the solutions of the
reduced equation:

a1x` b1y “ c1.

///

Proof. We already proved the first statement. To prove the second statement we will denote
the set of solutions of of the equation by

Va,b,c :“ tpx, yq P Z2 : ax` by “ cu.

We want to prove that Va,b,c “ Va1,b1,c1 . To show that Va1,b1,c1 Ď Va,b,c consider any solution
px, yq P Va1,b1,c1 , i.e., consider any ordered pair of integers px, yq P Z2 such that a1x` b1y “ c1.
Now multiply both sider of this equation by d to obtain

a1x` b1y “ c1

dpa1x` b1yq “ dc1

pda1qx` pdb1qy “ dc1

ax` by “ c.

We conclude that px, yq P Va,b,c and hence Va1,b1,c1 Ď Va,b,c. To show that Va,b,c Ď Va1,b1,c1

consider any solution px, yq P Va1,b1,c1 , i.e., any ordered pair of integers px, yq P Z2 such that
ax` by “ c. Then we must have

ax` by “ c

pda1qx` pdb1qy “ pdc1q

dpa1x` b1yq “ dc1.

Then since d ‰ 0 we can multiplicatively cancel d from both sides to obtain a1x ` b1y “ c1.
We conclude that px, yq P Va1,b1,c1 and hence Va,b,c Ď Va1,b1,c1 . .
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The process of dividing out by the greatest common divisor is called reduction. It is also
convenient to talk about reduction in the language of coprimality. Given integers a, b P Z
recall that we have 1 P Divpa, bq because the integer 1 divides every other integer. This tells
us that the greatest element of Divpa, bq must satisfy 1 ď gcdpa, bq by definition.

Definition of Coprimality. Given two integers a, b P Z, with a, b not both zero, we have
seen that there exists a greatest common divisor d “ gcdpa, bq and that this greatest common
divisor satisfies

1 ď gcdpa, bq ď mint|a|, |b|u.

In the extreme case that gcdpa, bq “ 1 we say that the integers a and b are coprime.

The utility of this concept is that any pair of integers a, b P Z (not both zero) can be reduced
to a coprime pair of integers as follows. Let d “ gcdpa, bq such that a “ da1 and b “ db1. In
this case I claim that gcdpa1, b1q “ 1 and hence the pair a1, b1 P Z is coprime.

Proof. Let d1 P Divpa1, b1q be any common divisor of a1 and b1, so that we have a1 “ d1a2

and b1 “ d1b2 for some integers a2, b2 P Z. Then we can substitute a “ d1a2 into the equation
a “ da1 to obtain

a “ da1 “ dpd1a2q “ pdd1qa2,

which implies that dd1 divides a. Similarly we find that dd1 divides b and hence that dd1 P
Divpa, bq. But d is by definition the greatest element of Divpa, bq so we must have dd1 ď d.
Now I claim that d1 ď 1. Indeed, if d1 ą 1 then multiplying both sides by d yields the
contradiction dd1 ą d.

We have shown that every element d1 P Divpa1, b1q satisfies d1 ď 1, which implies that 1 P
Divpa1, b1q is the greatest element of this set. In other words, gcdpa1, b1q “ 1.

In summary, we can restate the problem of linear Diophantine equations as follows.

Problem’ (Linear Diophantine Equations in Two Unknowns). Given integers a, b, c P
Z with gcdpa, bq “ 1, find all integers x, y P Z satisfying

ax` by “ c.

Indeed, if gcdpa, bq “ 1 then we automatically have gcdpa, bq|c. If 1 ‰ d “ gcdpa, bq then
we can divide both sides of the equation by d to obtain the reduced equation a1x ` b1y “ c1

which has the same solution. Note that the reduced equation satisfies gcdpa1, b1q “ 1. We will
assume from now on that all linear Diophantine equations are reduced in this way.
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2.3 A Bit of Linear Algebra

Suppose for the moment that we are able to compute the greatest common divisor in an
efficient way.1 Then we can restrict our attention to linear Diophantine equations

(LDE) ax` by “ c

in which a and b are coprime integers, i.e., in which gcdpa, bq “ 1. In this section we will
reduce the problem even further. The ideas will be familir to you if you have already taken
linear algebra.

The case of (LDE) in which c “ 0 is called a homogeneous linear Diophantine equation and
it turns out that this case is much easier to solve. Furthermore, it turns out that solving
homogeneous equations is almost enough to solve the full problem.

Theorem (Reduction to the Homogeneous Case). Consider any integers a, b, c P Z.
(For this theorem is doesn’t matter if a and b are coprime.) Now consider the solution sets to
the equation ax` by “ c and its homogeneous version ax` by “ 0:

V0 :“ tpx, yq P Z2 : ax` by “ 0u,

Vc :“ tpx, yq P Z2 : ax` by “ cu.

I claim that these sets are “almost the same” in the following sense: if px1, y1q P Vc is any one
specific solution then the full solution is given by

Vc “ V0 ` px
1, y1q :“ tpx` x1, y ` y1q : ax` by “ 0u.

///

In other words, the complete solution of the non-homogeneous equation coincides with the
complete solution of the homogeneous equation after translation by one particular solution.

Proof. To prove that V0 ` px
1, y1q Ď Vc consider any element px ` x1, y ` y1q P V0 ` px

1, y1q.
Then we have

apx` x1q ` bpy ` y1q “ pax` byq ` pax1 ` by1q

“ 0` c

“ c,

and hence px1 ` x, y1 ` yq P Vc as desired. Conversely, consider any element pu, vq P Vc and
define the vector px, yq :“ pu, vq ´ px1, y1q “ pu´ x1, v ´ y1q. Then we must have

ax` by “ apu´ x1q ` bpv ´ y1q

1We will give an algorithm for this in the next section.
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“ pau` bvq ´ pax1 ` by1q

“ c´ c

“ 0,

and it follows that px, yq P V0. But then we have pu, vq “ px, yq ` px1, y1q P V0 ` px
1, y1q as

desired.

We can visualize the situation as follows. If we temporarily allow x and y to be real numbers
then the equation ax` by “ c defines a line in the plane R2. The integer solutions px, yq can
be thought of as the “integer points” on this line; there may be none or there may be infinitely
many integer points. The associated homogeneous equation ax ` by “ 0 defines a parallel
line passing through the origin p0, 0q; thus it always has an integer point. Since a and b are
integers we will shortly see that the line ax` by “ 0 has infinitely many integers points.

The above theorem says that if we can find just one integer point px1, y1q on the line
ax ` by “ c then we will obtain a one-to-one correspondence between the integer points on
ax` by “ 0 and the integer points on ax` by “ c as in the following picture:

This one-to-one correspondence is of course not unique. If we chose a different integer point
px1, y1q on ax` by “ c then we would obtain a different picture:
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For this reason, there is no one correct way to express the solution of a linear Diophantine
equation. Two people with the correct solution might have answers that look slightly different.
That won’t bother us in this class. If you’re implementing the problem on a computer then
you might want to choose a standard format for the output; there are several available, such
as the Hermite normal form.

Thus we have broken down the problem into two steps:

• Find one particular solution ax1 ` by1 “ c.

• Find the general homogeneous solution ax` by “ 0.

We will deal with these two problems in the next two sections.

2.4 The Euclidean Algorithm

First we will deal with the problem of actually computing the greatest common divisor of
two numbers, for the purpose of reducing the Diophantine equation. As a side effect of the
computation we will obtain an efficient method to compute a single solution to the equation
ax` by “ c when gcdpa, bq divides c.

For relatively small numbers we can simply compute the set of common divisors by hand and
then select the greatest element of this set. For example, the set of common divisors of ´18
and 30 is

Divp´18, 30q “ t´6,´3,´2,´1, 1, 2, 3, 6u,

from which we conclude that gcdp´18, 30q “ 6. In this section I will present a beautiful
method, called the Euclidean Algorithm, that can compute the solution in logarithmic time.

18



To be precise, if 0 ď |a| ă |b| then the Euclidean Algorithm will compute gcdpa, bq in less than
2 ¨ log2 |b| steps.

First I’ll show you an example of the algorithm and then I’ll prove why it works. To compute
gcdp3094, 2513q we first note that 3094 ą 2513 and then we find the quotient and remainder
of 3094 mod 2513:

3094 “ 1 ¨ 2513` 581.

Then we replace the number 3094 by the remainder 581 to obtain the new pair of numbers
2513 ą 581. Now we compute the quotient and remainder of 2513 mod 581:

2513 “ 4 ¨ 581` 189.

This results in the new pair of numbers 581 ą 189. Now we repeat the process until a
remainder of 0 is reached:

3094 “ 1 ¨ 2513` 581

2513 “ 4 ¨ 581` 189

581 “ 3 ¨ 189` 14

189 “ 13 ¨ 14` 7

14 “ 2 ¨ 7` 0.

I claim that the last nonzero remainder in this sequence is the greatest common divisor:

gcdp3094, 2513q “ 7.

Now let me justify the claim. It all depends on the following lemma.

Lemma. Consider any integers a, b, q, r P Z such that a “ qb` r. (This q, r need not be the
quotient and remainder of a mod b.) Then we have

gcdpa, bq “ gcdpb, rq.

///

Proof. We will show more generally that the sets of common divisors are equal:

Divpa, bq “ Divpb, rq.

Then since the greatest common divisors are the greatests elements of these sets, they must
also be equal. To show that Divpa, bq Ď Divpb, rq, consider any common divisor d P Divpa, bq.
By definition there exist integers a1, b1 P Z such that a “ da1 and b “ db1. Then we must have

r “ a´ qb

“ pda1q ´ qpdb1q

“ dpa1 ´ qbq,
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which implies that d divides r, and it follows that d P Divpb, rq. Conversely, to show that
Divpb, rq Ď Divpa, bq consider any common divisor d P Divpb, rq. By definition there exist
integers b1, r1 P Z such that b “ db1 and r “ dr1. Then we must have

a “ qb` r

“ qpdb1q ` pdr1q

“ dpqb1 ` r1q,

which implies that d divides a, and it follows that d P Divpa, bq as desired.

Theorem (The Euclidean Algorithm). Consider any integers a, b P Z with b ‰ 0. To
compute gcdpa, bq we first apply Division With Remainder to obtain

"

a “ q1 ¨ b` r1
0 ď r1 ă |b|

If r1 ‰ 0 then we continue to compute the quotient and remainder of b mod r1:

"

a “ q2 ¨ r1 ` r2
0 ď r2 ă r1

And if r2 ‰ 0 we compute the quotient and remainder of r1 mod r2:

"

a “ q3 ¨ r2 ` r3
0 ď r3 ă r2

Thus we obtain a strictly descending sequence of non-negative integers:

0 ‰ |b| “: r0 ą r1 ą r2 ą ¨ ¨ ¨ ě 0.

I claim that the sequence must terminate. That is, I claim that there exists an integer n ě 1
such that rn “ 0 and rn´1 ‰ 0. Furthermore, I claim in this case that rn´1 is the greatest
common divisor of a and b:

gcdpa, bq “ rn´1.

///

Proof. Assume for contradiction that we have rn ‰ 0 for all n ě 1. Then we obtain an
infinite strictly decreasing sequence of positive integers:

0 ‰ |b| “: r0 ą r1 ą r2 ą ¨ ¨ ¨ ą 0.

Now consider the set S :“ tr0, r1, r2, . . . , u. This set is non-empty because |b| P S and it is
bounded below by 0. Thus the Well-Ordering Principle says that S must have a least element
of the form r` P S. But this is impossible because r``1 ă r` is also an element of S. We
conclude that there exists n ě 1 with rn “ 0 and by another application of Well-Ordering we
can assume that rn´1 ‰ 0.
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To prove that this numbe rn´1 is the greatest common divisor of a and b we repeatedly use
the previous Lemma to obtain

gcdpa, bq “ gcdpb, r1q

“ gcdpr1, r2q

“ gcdpr2, r3q

...

“ gcdprn´1, rnq

“ gcdprn´1, 0q.

This last gcd exists because rn´1 ‰ 0. Furthermore, the common divisors of rn´1 and 0 are
just the divisors of rn´1 because everything divides zero. Since rn´1 is positive we conclude
that gcdprn´1, 0q “ rn´1 and hence

gcdpa, bq “ gcdprn´1, 0q “ rn´1.

Remarks:

• I’ll ask you to compute the complexity of the Euclidean Algorithm on HW2.

• The algorithm can be implemented very simply without even mentioning the words
“quotient” and “remainder.” Given two non-negative integers a, b P N not both zero
perform the following steps:

while a ‰ b do

if a ą b then replace a by a´ b
else replace b by b´ a

return a

I claim that this is just the Euclidean Algorithm in disguise. [Why?]

Thus the Euclidean Algorithm is an efficient way to compute the greatest common divisor of
two integers. However, I claim that the same algorithm can also be used to compute solutions
to linear Diophantine equations. Before describing the general method I’ll illustrate the ideas
behind it by considering the equation

3094x` 2513y “ 21.

We saw above that gcdp3094, 2513q “ 7. Then since 7|21 we know that this equation might
possibly have an integer solution px, yq P Z2. To find such a solution the trick is to broaden
our scope and consider the following homogeneous Diophantine equation in three unknowns
x, y, z:

3094x` 2513y “ z.
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The reason we do this is because there are two obvious solutions to this equation:

3094p1q ` 2513p0q “ p3094q

3094p0q ` 2513p1q “ p2513q.

And once we have two solutions we can combine them in various ways to get infinitely many
solutions. We will borrow a principle from linear algebra.

The Principle of Linear Combination. Fix two integers a, b P Z and suppose that the
vectors px1, y1, z1q P Z3 and px2, y2, z2q P Z3 are two solutions of the equation

ax` by “ z.

Then for any integers u, v P Z I claim that the linear combination vector

upx1, y1, z1q ` vpx2, y2, z2q “ pux1 ` vx2, uy1 ` vy2, uz1 ` vz2q P Z3

is another solution. In other words, the set of solution vectors

V “ tpx, y, zq P Z3 : ax` by “ zu

is closed under vector addition and scalar multiplication by integers. ///

Proof. Suppose that px1, y1, z1q and px2, y2, z2q are in V and consider any two integers u, v P Z.
Then we have

apux1 ` vx2q ` bpuy1 ` vy2q “ upax1 ` by1q ` vpax2 ` by2q “ uz1 ` vz2,

and it follows that upx1, y1, z1q ` vpx2, y2, z2q is also in V .

Let’s apply this idea to our problem. If V is the set of solutions px, y, zq P Z3 to the equation
3094x` 2513y “ z then of course we must have the trivial solution p0, 0, 0q P V . But we also
saw above that there two “obvious but non-trivial solutions”:

p1, 0, 3094q P V and p0, 1, 2513q P V.

Now we can apply the Principle of Linear Combination to create as many new solutions as
we want. In the end we are looking for a solution of the form px, y, 7q; is there some sequence
of linear combinations that will achieve this? Certainly. We can just apply the steps of the
Euclidean Algorithm to the third coordinates and let the first two coordinates come along for
the ride. To keep track of the steps I will use the vector notation

x1 :“ p1, 0, 3094q and x2 :“ p0, 1, 2513q.

Then the first step of the Euclidean Algorithm says that we should divide 3094 by 2513 to
obtain 3094 “ 1 ¨ 2513` 581. In terms of vectors we compute

x3 :“ x1 ´ 1 ¨ x2
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“ p1, 0, 3094q ´ 1 ¨ p0, 1, 2513q

“ p1,´1, 581q.

Observe that the resulting vector is another solution of the equation because

3094p1q ` 2513p´1q “ p581q.

So far this is not very interesting, but then we continue the process:

x1 “ p1, 0, 3094q
x2 “ p0, 1, 2513q
x3 :“ x1 ´ 1 ¨ x2 “ p1, ´1, 581q
x4 :“ x2 ´ 4 ¨ x3 “ p´4, 5, 189q
x5 :“ x3 ´ 3 ¨ x4 “ p13, ´16, 14q
x6 :“ x4 ´ 13 ¨ x5 “ p´173, 213, 7q
x7 :“ x5 ´ 2 ¨ x6 “ p359, ´442, 0q

At each step the Principle of Linear Combination guarantees that xn is a new solution of the
original equation. In the second-to-last step, the Euclidean Algorithm guarantees that the
third coordinate is the gcd, and we obtain the (non-trivial!) equation:

3094p´173q ` 2513p213q “ 7 “ gcdp3094, 2513q.

Finally, we can return to our motivating equation

3094x` 2513y “ 21.

Since 7|21 we believed that there might be a solution, and now we can find one easily. Since
21 “ 3 ¨ 7 we just “scalar multiply” the solution x6 “ p´173, 213, 7q by 3 to obtain

3094p´519q ` 2513p639q “ p21q.

This example illustrates that the following general method is correct.

The Vector Euclidean Algorithm. Consider any integers a, b P Z with b ą 0. As in the
usual Euclidean Algorithm we define a sequence of quotients and remainders pqi, riq P Z2 by
repeated division as follows:

a “ q1 ¨ b` r1

b “ q2 ¨ r1 ` r2

r1 “ q3 ¨ r2 ` r3
...

rn´3 “ qn´1 ¨ rn´2 ` rn´1

rn´2 “ qn ¨ rn´1 ` 0.
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Recall that rn´1 “ gcdpa, bq. Now consider the two obvious solutions x1 :“ p1, 0, aq and
x2 “ p0, 1, bq of the equation ax` by “ z. If we recursively define the vectors

xi`2 :“ xi`1 ´ qi ¨ xi

then the vector xn has the form px1, y1, gcdpa, bqq for some integer x1, y1 P Z such that

ax1 ` by1 “ gcdpa, bq.

///

Here is a summary of our progress in this section.

• Consider integers a, b, c P Z with a, b not both zero. We have shown that the linear
Diophantine equation

(LDE) ax` by “ c

has a solution px, yq P Z2 if and only if gcdpa, bq divides c.

• More specifically, if c “ n ¨gcdpa, bq for some n P Z then we can use the Vector Euclidean
Algorithm to obtain specific integers x1, y1 P Z such that

ax1 ` by1 “ gcdpa, bq

and then we can multiply both sides by n to obtain a specific solution to (LDE):

apnx1q ` bpny1q “ c.

To complete the solution of (LDE) it remains to find the complete solution of the associated
homogeneous equation: ax ` by “ 0. The answer is easy to guess but a bit tricky to prove.
We will do this in the next section.

2.5 Euclid’s Lemma

Consider two integers a, b P Z not both zero. Our goal in this section is to find the complete
solution of the homogeneous linear Diophantine equation

(HLDE) ax` by “ 0

If d “ gcdpa, bq ‰ 1 with a “ da1 and b “ db1 then recall from section 2.2 that we can
“multplicatively cancel” d from both sides of (HLDE) to obtain a new equation

a1x` b1y “ 0

which has the same solutions and where gcdpa1, b1q “ 1. Thus it is sufficient to solve (HLDE)
in the case that a and b are coprime. The complete solution is given by the following theorem.
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Theorem (Homogeneous Linear Diophantine Equations). Consider two integers a, b P
Z with gcdpa, bq “ 1. Then the complete solution of the Diophantine equation

ax` by “ 0

is given by px, yq “ kpb,´aq :“ pkb,´kaq for all k P Z. ///

It is easy to verify that every pair of the form px, yq “ pkb,´kaq is a solution. Indeed, we have

ax` by “ apkbq ` bp´kaq

“ kpabq ` kp´abq

“ kpab´ abq

“ k ¨ 0

“ 0.

But proving that every solution has this form is a bit harder. To do this we will need a
lemma whose proof depends on the Euclidean Algorithm. This lemma is important enough
to deserve a special name.

Euclid’s Lemma. Consider integers a, b, c P Z with gcdpa, bq “ 1. Then we have

a|pbcq ñ a|c.

Proof of the Lemma. Assume that a|pbcq so there exists an integer k with the property
ak “ pbcq. Since gcdpa, bq “ 1 it follows from the Vector Euclidean Algorithm that there exists
a pair of integers x1, y1 P Z with the property

1 “ ax1 ` by1.

By multiplying both sides of this equation by c we obtain

c “ cpax1 ` by1q

“ cax1 ` pbcqy1

“ cax1 ` pakqy1

“ apcx1 ` ky1q,

and it follows that a|c as desired.

[Remark: That was a very good trick; never forget it.]

Proof of the Theorem. Assume that gcdpa, bq “ 1. We have already seen that all vectors
of the form px, yq “ kpa,´bq “ pka,´kbq with k P Z are solutions of the equation ax` by “ 0.
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Conversely, let px, yq P Z2 be any vector satisfying ax` by “ 0. In this case we want to prove
that px, yq “ kpb,´aq “ pkb,´kaq for some k P Z. If a “ 0 or b “ 0 then one can check that
the solution has the correct form. [Maybe you should check this.] So let us assume that a
and b are both nonzero. Now we will rewrite the equation in two ways:

ax` by “ 0

ax “ bp´yq

ap´xq “ by.

The equation ax “ bp´yq says that a|bp´yq and then since gcdpa, bq “ 1 Euclid’s Lemma says
that a divides ´y. In other words, there exists an integer k with the property

´y “ ka

y “ ´ka.

Similarly, the equation ap´xq “ by says that b|ap´xq and then Euclid’s Lemma implies that
b|p´xq so there exists an integer ` P Z with the property

´x “ `b

x “ ´`b.

Now we substitute these expressions for x and y into the original equation:

ax` by “ 0

ap´`bq ` bp´kaq “ 0

abp´`´ kq “ 0.

Since we have assumed that a and b are both nonzero we must have ab ‰ 0 and then we can
multiplicatively cancel ab to obtain

´`´ k “ 0

´` “ k.

It follows that px, yq “ p´`b,´kaq “ pkb,´kaq “ kpb,´aq as desired.

In summary, consider two integers a, b P Z, not both zero, and let d “ gcdpa, bq with a “ da1

and b “ db1. We have shown that the homogeneous Diophantine equation

ax` by “ 0

has the complete solution

V “ tpx, yq P Z2 : ax` by “ 0u “ tpkb1,´ka1q : k P Zu.

Geometrically we can think of V as the family of integer points on the line ax ` by “ 0
in the Cartesian plane. This line contains the integer point p0, 0q because the equation is
homogeneous. Then from the above result we see that the rest of the integer points are
equally spaced with distance

a

pa1q2 ` pb1q2 between them:
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2.6 Summary

We have now completely solved the linear Diophantine equation

(LDE) ax` by “ c.

Here is a point-form summary of our results:

• If a “ b “ 0 and c ‰ 0 then there is no solution. If a “ b “ c “ 0 then every point
px, yq P Z2 is a solution.

• If a, b are not both zero then there exists a greatest common divisor d :“ gcdpa, bq with
a “ da1 and b “ db1 for some unique integers a1, b1 P Z. If d - c then there is no solution.

• If d|c, i.e., if there exists an integer c1 P Z with c “ dc1 then the equation (LDE) is
equivalent to the “reduced” Diophantine equation

(RLDE) a1x` b1y “ c1,

where now we have gcdpa1, b1q “ 1.

• By applying the Vector Euclidean Algorithm we can find a specific pair of integers
x1, y1 P Z such that

a1x1 ` b1y1 “ gcdpa1, b1q “ 1,
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and then multiplying both sides by c1 gives us a specific solution to (RLDE):

a1pc1x1q ` b1pc1y1q “ c1.

• On the other hand, we can use Eucild’s Lemma to prove that the associated homoge-
neous Diophantine equation

(HLDE) a1x` b1y “ 0

has the complete solution given by

V0 :“ tpx, yq P Z : a1x` b1y “ 0u “ tpkb1,´ka1q : k P Zu.

• Finally, let V :“ tpx, yq P Z2 : ax ` by “ cu denote the complete solution to the
original equation (LDE), which is the same as the solution to (RLDE). By combining
the complete solution V0 to (HLDE) with the specific solution pc1x1, c1y1q to (LDE), a
Bit of Linear Algebra shows us that

V “ V0 ` pc
1x1, c1y1q

“ tpkb1,´ka1q : k P Zu ` pc1x1, c1y1q
“ tpc1x1 ` kb1, c1y1 ´ ka1q : k P Zu.

///

Geometrically, we can think of (LDE) as the equation of a general line in the real Cartesian
plane R2. If a, b, c P Z then the Diophantine problem is to find all of the “integer points” on
this line. If gcdpa, bq - c then we find that the line contains no integer points (amazing as
that may be), and when gcdpa, bq|c we find that the line contains infinitely many equally
spaced integer points. The displacement between any two consecutive points is the vector
pb1,´a1q, which has length

a

pa1q2 ` pb1q2. If we can find just one integer point pc1x1, c1y1q on
the line, then the rest of the integer points are “parametrized” by

pc1x1, c1y1q ` kpb1,´a1q.

There are infinitely many choices for the specific integers x1, y1. Unfortunately, no choice is
better than any other, so there is no one “correct” way to parametrize the solution. Here is a
picture of the situation:
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Finally, let’s complete our running example.

Example: Find the complete solution to the Diophantine equation

3094x` 2513y “ 21.

Solution: We consider the associated equation 3094x ` 2513y “ z and the set of integer
vectors V “ tpx, y, zq P Z3 : 3094x ` 2513y “ zu solving this equation. We run the Vector
Euclidean Algorithm starting with the two “basis vectors”:

x1 “ p1, 0, 3094q and x2 “ p0, 1, 2513q.

By omitting unnecessary symbols we obtain the following table of solution vectors:

x y z vector px, y, zq

1 0 3094 x1

0 1 2513 x2

1 ´1 581 x3 “ x1 ´ 1 ¨ x2

´4 5 189 x4 “ x3 ´ 4 ¨ x3

13 ´16 14 x5 “ x3 ´ 3 ¨ x4

´173 213 7 x6 “ x4 ´ 13 ¨ x5

359 ´442 0 x7 “ x5 ´ 2 ¨ x6

I claim that the final two vectors x6 and x7 contain the solution to our problem. Indeed,
by the Principle of Linear Combination we know that all linear combinations `x6 ` kx7 with
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`, k P Z are in the set V . In other words, we have

3094p´173`` 359kq ` 2513p213`´ 442kq “ p7`` 0kq @`, k P Z.

Finally, since 21 “ 3 ¨ 7 “ 3 ¨ gcdp3094, 2513q we specify ` “ 3 to obtain the equation

3094p´519` 359kq ` 2513p639´ 442kq “ 21 @k P Z.

This is the complete solution to the problem.

3 Systems of Linear Diophantine Equations

3.1 Bézout’s Identity for Vectors

The results of the previous chapter can be readily generalized to the following cases:

• One linear Diophantine equation in more than two variables.

• Systems of linear Diophantine equations.

The main difficulty here is to generalize the concept of “greatest common divisor;” first to
vectors and then to matrices of integers. In this section we will discuss the greatest common
divisor of a vector. In the next section we will introduce a vector version of the Euclidean
algorithm in order to compute this gcd. Then in the final section I will state a powerful
theorem (the Smith Normal Form of an integer matrix) and use this to solve any system of
linear Diophantine equations.

In order to motivate the discussion, let’s consider the following Diophantine equation:

42x` 91y ` 35z “ 21.

We want to find all integer solutions x, y, z P Z. As before, if a solution exists then we know
that any common divisor of the coefficients 42, 19, 35 must also divide the constant term 21.
For this reason we will define the greatest common divisor of an integer vector.

Definition of Vector GCD. Let pa1, a2, . . . , anq ‰ p0, 0, . . . , 0q be a nonzero vector of inte-
gers, and consider the set of common divisors:

Divpa1, . . . , anq :“ td P Z : @i, d|aiu.

By assumption there exists some index i such that ai ‰ 0. Then since every element of
Divpa1, . . . , anq is a divisor of ai we conclude that this set is bounded above by the number
|ai|. It follows from Well-Ordering that there exists a greatest element of the set, which we
call the greatest common divisor gcdpa1, . . . , anq. Since 1 is always a common divisor we have

1 ď gcdpa1, . . . , anq ď |ai|.
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In the special case that gcdpa1, . . . , anq “ 1 we say that the vector is primitive. ///

As in the case of two variables, we have the following basic lemma.

Lemma. Suppose that d “ gcdpa1, . . . , anq, so that ai “ da1i for some integers a1i. Then I
claim that the vector pa11, . . . , a

1
nq is primitive:

gcdpa11, . . . , a
1
nq “ 1.

Proof. Let e P Z be a common divisor of pa11, . . . , a
1
nq, say a1i “ ea2i for some a2i P Z. This

implies that ai “ da1i “ pdeqa
2
i , and hence de is a common divisor of pa1, . . . , anq. But then

we have de ď d, since d is the greatest common divisor. Finally, since 1 ď e and 1 ď d we
conclude that e ď 1 and hence e “ 1. Indeed, if we had e ą 1 then multiplying both sides by
d would give de ą d, a contradiction.

This result allows us to reduce any linear diophantine equation to the primitive case.

Theorem (Primitive Reduction). Consider the general LDE in n variables

(VLDE) a1x1 ` ¨ ¨ ¨ anxn “ b,

where a1, . . . , an P Z and pa1, . . . , anq ‰ p0, . . . , 0q. Let d “ gcdpa1, . . . , anq with ai “ da1i for
some integers a1i P Z. If d - b then (VLDE) has no integer solution x1, . . . , xn P Z. However,
if d|b with b “ db1 for some b1 P Z then I claim that (VLDE) has the same solution set as the
following primitive equation:

(PLDE) a11x1 ` ¨ ¨ ¨ a
1
nxn “ b1.

Proof. Exercise.

Thus it remains to determine the solution of the primitive equation (PLDE). We could again
consider the homogeneous equation separately, but in this case that doesn’t lead to a great
simplification because the homogeneous case is just as hard. For now I will simply prove that
a solution exists. We will turn to computations in the next section.

Theorem (Bézout’s Identity for Vectors). Let pa1, . . . , anq be a nonzero vector of integers
and let d “ gcdpa1, . . . , anq. Then:

(1) There exist some integers x1, . . . , xn P Z such that

a1x1 ` ¨ ¨ ¨ ` anxn “ d.
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(2) More abstractly, we have the following identity of sets:

ta1k1 ` ¨ ¨ ¨ ` ankn : k1, . . . kn P Zu “ tdk : k P Zu
“a1Z` ¨ ¨ ¨ ` anZ” “ “dZ.”

Proof. (1): Consider the following set:

S :“ ta1x2 ` ¨ ¨ ¨ ` anxn : x1, . . . , xn P Z, a1x2 ` ¨ ¨ ¨ ` anxn ą 0u.

If ai ‰ 0 then this set contains the number |ai|, thus it is not empty. It follows from Well-
Ordering that the set contains a smallest element; call it e P S. By definition we have e ą 0
and e “ a1x1 ` ¨ ¨ ¨ ` anxn for some integers x1, . . . , xn P Z. Our goal is to show that e “ d.

First we will show that e is a common divisor of a1, . . . , an. To do this, let us divide each ai
by e to obtain ai “ qie` r and 0 ď ri ă e. I claim that we must have ri “ 0 for all i. If not,
then there exists some ri ‰ 0 which implies that 0 ă ri ă d. But we also know that

ri “ ai ´ qie

“ ai ´ qpa1x1 ` ¨ ¨ ¨ ` anxnq

“ a1p´qx1q ` ¨ ¨ ¨ ` aip´qxi ` 1q ` ¨ ¨ ¨ ` anp´qxnq,

which implies that ri is a strictly smaller element of S, contradicting the definition of e.

Finally, we will show that d ď e and hence d “ e. Indeed, since d is a common divisor of
a1, . . . , an we can write ai “ da1i for some integers a1i P Z. It follows that

e “ a1x1 ` ¨ ¨ ¨ ` anxn “ da11x1 ` ¨ ¨ ¨ ` da
1
nxn “ dpa11x1 ` ¨ ¨ ¨ ` a

1
nxnq.

Finally, since d ą 0 and e|d we conclude that e ď d as desired.

(2): First we will show that a1Z ` ¨ ¨ ¨ ` anZ Ď dZ. Indeed, since d is a common divisor we
have ai “ da1i for some integers a1i. Then for any element a1k1 ` ¨ ¨ ¨ ` ankn of the left hand
set we have

a1k1 ` ¨ ¨ ¨ ` ankn “ da11k1 ` ¨ ¨ ¨ ` da
1
nkn “ dpa11k1 ` ¨ ¨ ¨ ` a

1
nknq P dZ.

Next we will show that dZ Ď a1Z ` ¨ ¨ ¨ ` anZ. Indeed, consider any element dk P dZ. From
part (1) we know that d “ a1x1 ` ¨ ¨ ¨ ` anxn for some integers x1, . . . , xn P Z. Then we have

dk “ pa1x1 ` ¨ ¨ ¨ ` anxnqk “ a1pkx1q ` ¨ ¨ ¨ ` anpkxnq P a1Z` ¨ ¨ ¨ ` anZ.

Bézout’s Identity is an extremely useful theoretical result. In particular, it tells us that
every primitive linear Diophantine equation (hence every linear Diophantine equation) has a
solution. Indeed, suppose we have

gcdpa1, . . . , anq “ 1.
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Then Bézout Identity tells us that a1x1 ` ¨ ¨ ¨ ` anxn “ 1 for some x1, . . . , xn P Z. Finally, for
any constant b P Z we obtain a solution:

a1pbx1q ` ¨ ¨ ¨ ` anpbxnq “ b.

Unfortunately it does not help us to find a solution, nor to determine the complete solution.
We will present an algorithm to do this in the next section, which is a matrix generalization
of the Euclidean algorithm.

3.2 The Euclidean Algorithm for Vectors

The Euclidean algorithm is based on the following two facts:

I. gcdpa, bq “ gcdpb, aq

II. gcdpa, bq “ gcdpa, b´ kaq

I will call these elementary operations of types I and II. For example, here is the Euclidean
algorithm applied to 52 and 91:

gcdp52, 91q “ gcdp52, 39q IIpk “ 1q

“ gcdp39, 52q I

“ gcdp39, 13q IIpk “ 1q

“ gcdp13, 39q I

“ gcdp13, 0q IIpk “ 3q

“ 13.

More generally, we have the following elementary operations on vectors:

I. gcdpa1, . . . , ai, . . . , aj , . . . , anq “ gcdpa1, . . . , aj , . . . , ai, . . . , anq

II. gcdpa1, . . . , ai, . . . , aj , . . . , anq “ gcdpa1, . . . , ai, . . . , aj ´ kai, . . . , anq

That is, we can swap two entries of an integer vector, or replace any entry by itself minus k
times another entry for any k P Z, without changing the gcd of the vector.

Proof. Exercise.

By alternating between operations of types I and II we may compute the gcd of any integer
vector. Here’s an example with three entries:

gcdp42, 91, 35q “ gcdp35, 91, 42q Ipi, j “ 1, 3q

“ gcdp35, 21, 42q IIpi, j “ 1, 2, k “ 2q

“ gcdp35, 21, 7q IIpi, j “ 1, 3, k “ 1q

“ gcdp7, 21, 35q Ipi, j “ 1, 3q
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“ gcdp7, 0, 35q IIpi, j “ 1, 2, k “ 3q

“ gcdp7, 0, 0q IIpi, j “ 1, 3, k “ 5q

“ 7.

Here I followed the convention that we will always move the smallest entry into the leftmost
position. Then we will use this entry as a pivot to reduce each other entry, and repeat.

Since gcdp42, 91, 35q “ 7 it follows from Bézout’s Identity that there exist some integers
x1, x2, x3 P Z satisfying

42x1 ` 91x2 ` 35x3 “ 7.

Then since 21 “ 7 ¨ 3 we can multiply each side by 3 to obtain a solution to the example
problem:

42p3x1q ` 91p3x2q ` 35p3x3q “ 12.

But how can we actually find such a solution? First I will show you a method to compute
an infinite family of solutions and then I will explain why this method actually gives the full
integer solution. The key is to apply the elementary operations of types I and II to vectors
instead of numbers.

Consider the set of all integer vectors pz, x1, x2, x3q satisfying 42x1 ` 91x2 ` 35x3 “ z. Since
the equation is homogeneous this set is closed under integer linear combinations. We will
begin with the trivial vectors p42, 1, 0, 0q, p91, 0, 1, 0q and p35, 0, 0, 1q, arranged as columns:

42 91 35

1 0 0
0 1 0
0 0 1

Then we perform the same sequence of operations that we did when computing the gcd:

42 91 35

1 0 0
0 1 0
0 0 1

 

35 21 42

0 0 1
0 1 0
1 0 0

 

35 21 7

0 0 1
0 1 0
1 ´2 ´1

 

7 21 35

1 0 0
0 1 0
´1 ´2 1

 

7 0 0

1 ´3 ´5
0 1 0
´1 1 6

 

21 0 0

3 ´3 ´5
0 1 0
´3 1 6

In the final step I multiplied the first column by 3 to obtain the particular solution

42p3q ` 91p0q ` 35p´3q “ 21.

The second and third columns give us two homogeneous solutions. In fact, I claim that these
two vectors generate the complete homogeneous solution. That is, I claim that the complete
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solution to the Diophantine equation 42x1 ` 91x2 ` 35x3 “ 21 is given by

¨

˝

x1
x2
x3

˛

‚“

¨

˝

3
0
´3

˛

‚` k

¨

˝

´3
1
1

˛

‚` `

¨

˝

´5
0
6

˛

‚ for all integers k, ` P Z.

Certainly one can check that these are solutions. The hard part is to show that these are
the only solutions. The reason for this comes down to the fact that all of the steps of the
algorithm are invertible. The key idea is captured by the following definition/theorem.

Definition/Theorem (Unimodular Matrices). Let U P MatnˆnpZq be a square n ˆ n
matrix with integer entries. We say that U is unimodular if the following two properties hold:

• The inverse matrix exists.

• The inverse matrix has integer entries.

I claim that
U is unimodular ô detpUq “ `1 or ´ 1.

Proof. First suppose that U is unimodular, so that U´1 exists and has integer entries. Then:

• detpUq and detpU´1q are integers,

• detpUq detpU´1q “ detpUU´1q “ detpIq “ 1.

It follows that detpUq “ ˘1 and detpU´1q “ ˘1. Conversely, suppose that U is an integer
matrix with detpUq “ ˘1. Since detpUq ‰ 0 we know that the inverse U´1 exists, possibly with
rational entries. To show that the entries of U´1 are actually integers, let C denote the cofactor
matrix of U , whose i, j-entry equals p´1qi`j times the determinant of the pn ´ 1q ˆ pn ´ 1q
submatrix of U obtained by deleting the ith row and the jth column. It is a basic theorem
(which I will not prove) that the inverse of U satisfies the following identity:

U´1 “
1

detpUq
CT .

Since detpUq “ ˘1 and since C has integer entries, we conclude that U´1 has integer entries.

It follows from this theorem that the product of any two unimodular matrices is unimodular.2

We will apply this fact to a special family of matrices, called elementary matrices.

2In other words, the set of unimodular matrices is a group.
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Definition/Theorem (Elementary Matrices). For any 1 ď i ă j ď n and k P Z we define
the following matrices:

Pij “

¨

˚

˚

˚

˚

˚

˚

˚

˝

1
...

...
¨ ¨ ¨ 0 ¨ ¨ ¨ 1 ¨ ¨ ¨

... 1
...

¨ ¨ ¨ 1 ¨ ¨ ¨ 0 ¨ ¨ ¨
...

... 1

˛

‹

‹

‹

‹

‹

‹

‹

‚

and Eijpkq “

¨

˚

˚

˚

˚

˚

˚

˚

˝

1
...

...
¨ ¨ ¨ 1 ¨ ¨ ¨ ´k ¨ ¨ ¨

... 1
...

¨ ¨ ¨ 0 ¨ ¨ ¨ 1 ¨ ¨ ¨
...

... 1

˛

‹

‹

‹

‹

‹

‹

‹

‚

,

where the ith and jth columns/rows are dotted, and where blank entries are zero. I claim
that:

• Pij and Eijpkq are unimodular matrices with detpPijq “ ´1 and detpEijpkqq “ 1 for any
k P Z. The inverses are given explicitly by P´1ij “ Pij and Eijpkq

´1 “ Eijp´kq.

• For any nˆ n matrix A, multiplying on the left (right) by Pij switches the ith and jth
rows (columns).

• For any n ˆ n matrix A, multiplying on the left (right) by Eijpkq replaces the jth row
(column) by itself minus k times the ith row (column).

Proof. Exercise.

Note that the elementary row operations (I) A ÞÑ PijA and (II) A ÞÑ EijpkqA and the elemen-
tary column operations (I) A ÞÑ APij and (II) A ÞÑ AEijpkq are precise matrix analogues of
the elementary operations that we used to compute the gcd of an integer vector. This allows
me to state and prove the following theorem.

Theorem (The Euclidean Algorithm for Vectors). Consider any nonzero integer vector
pa1, . . . , anq ‰ p0, . . . , 0q and let d “ gcdpa1, . . . , anq be the greatest common divisor. We know
from Bézout’s Identity that there exist some specific integers x1, . . . , xn P Z satisfying

(VLDE) a1x1 ` a2x2 ` ¨ ¨ ¨ ` anxn “ d.

I claim that the following algorithm produces the complete integer solution. First we
create a matrix of shape pn` 1q ˆ n by placing the nˆ n identity matrix under the vector :

ˆ

a1 a2 ¨ ¨ ¨ an
I

˙

 

ˆ

d 0 ¨ ¨ ¨ 0

U

˙

From previous remarks we know that it is always possible to reach the vector pd, 0, . . . , 0q by
applying elementary operations of types I and II. Suppose that we perform the same operations
on the columns of our augmented matrix, and let U be the nˆ n integer matrix that appears
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under the vector pd, 0, . . . , 0q. Then I claim that the complete solution to the Diophantine
equation (VLDE) is given by

¨

˚

˝

x1
...
xn

˛

‹

‚

“ p1st column of Uq `
n´1
ÿ

iěi

kipi` 1th column of Uq

for all integers k1, . . . , kn´1Z. Furthermore, for any integer m P Z we obtain the complete
solution to the linear Diophantine equation

a1x1 ` a2x2 ` ¨ ¨ ¨ ` anxn “ dm

by scaling the first column of U :

¨

˚

˝

x1
...
xn

˛

‹

‚

“ mp1st column of Uq `
n´1
ÿ

iěi

kipi` 1th column of Uq.

Proof. Let us write the Diophantine equation (VLDE) as a matrix equation

Ax “ d,

where

A “
`

a1 ¨ ¨ ¨ an
˘

and x “

¨

˚

˝

x1
...
xn

˛

‹

‚

.

Let E1, E2, . . . , Ek be the (non-unique) sequence of elementary matrices of types I and II
corresponding to the column operations in the algorithm, so that

AE1E2 ¨ ¨ ¨Ek “
`

d 0 ¨ ¨ ¨ 0
˘

.

By applying the corresponding column operations to the augmented matrix we obtain

ˆ

A

I

˙

 

ˆ

AE1E2 ¨ ¨ ¨Ek
IE1E2 ¨ ¨ ¨Ek

˙

“

ˆ

d 0 ¨ ¨ ¨ 0

U

˙

,

where the matrix U is defined by

U :“ E1E2 ¨ ¨ ¨Ek.

Note that this matrix is unimodular since it is a product of unimodular matrices. Thus we
may use this matrix to define an integral change of coordinates:

y “ U´1x ðñ x “ Uy.
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Rewriting the original equation (VLDE) in the new coordinate system gives

Ax “ d
`

d 0 ¨ ¨ ¨ 0
˘

U´1x “ d
`

d 0 ¨ ¨ ¨ 0
˘

y “ d

dy1 ` 0y2 ` ¨ ¨ ¨ ` 0yn “ d,

which is easy to solve. Indeed, the general solution is given by

¨

˚

˚

˚

˝

y1
y2
...
yn

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

1
k1
...

kn´1

˛

‹

‹

‹

‚

for any integers k1, . . . , kn´1Z.

Then converting back into x-coordinates gives the desired solution:

x “ Uy “ U

¨

˚

˚

˚

˝

1
k1
...

kn´1

˛

‹

‹

‹

‚

“ p1st column of Uq `
n
ÿ

iě2

ki´1pith column of Uq.

Observe that the general solution is given by adding one particular solution (given by the 1st
column of U) to the general homogeneous solution (given by the other columns of U). For
any m P Z, the Diophantine equation

a1x1 ` a2x2 ` ¨ ¨ ¨ ` anxn “ dm

has the same homogeneous equation as before, therefore we only need to change the particular
solution, and this is easy to do. Since (1st column of U) is a solution to the original (VLDE)
we conclude that m(1st column of U) is a solution to the new equation.

Thus we have verified our solution to the Diophantine equation 42x1 ` 91x2 ` 35x3 “ 21. To
emphasize that the form of the solution is not unique, let us consider another valid sequence
of operations:

42 91 35

1 0 0
0 1 0
0 0 1

 

42 7 35

1 ´2 0
0 1 0
0 0 1

 

7 42 35

´2 1 0
1 0 0
0 0 1

 

7 0 0

´2 13 10
1 ´6 ´5
0 0 1

From this we obtain the complete solution to the equation 42x1 ` 91x2 ` 35x3 “ 7:

¨

˝

x1
x2
x3

˛

‚“

¨

˝

´2
1
0

˛

‚` k

¨

˝

13
´6
0

˛

‚` `

¨

˝

10
´5
1

˛

‚ for all integers k, ` P Z.
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And scaling the first column by 3 gives the complete solution to 42x1 ` 91x2 ` 35x3 “ 21:

¨

˝

x1
x2
x3

˛

‚“

¨

˝

´6
3
0

˛

‚` k

¨

˝

13
´6
0

˛

‚` `

¨

˝

10
´5
1

˛

‚ for all integers k, ` P Z.

This doesn’t look much like our earlier solution, but it is completely equivalent. It could be a
tricky problem to determine whether two different-looking solutions are really the same.3 In
fact, this problem might be so tricky that we could built a cryptosystem out of it.

3.3 The Euclidean Algorithm for Matrices

Since we have already done the work, let me mention that “essentially the same technique”
can be used to solve any system of linear Diophantine equations in any number of unknowns. I
will state the relevant theorem from linear algebra without proof. This result was published by
Henry John Stephen Smith in 1861 and it was later generalized to polynomials by Weierstrass
and Frobenius.

Theorem (Smith Normal Form of an Integer Matrix). Let A P MatmˆnpZq be any
integer matrix with m rows and n columns. Then there exist unimodular matrices U P

MatnˆnpZq and V P MatmˆmpZq and integers d1|d2 ¨ ¨ ¨ |dr (each dividing the next) such that

V AU “ D :“

¨

˚

˚

˚

˚

˚

˝

d1
d2

. . .

dr

0r,n´r

0m´r,r 0m´r,n´r

˛

‹

‹

‹

‹

‹

‚

,

where all the empty spaces are zero and the symbol 0a,b denotes the a ˆ b matrix with all
zero entries. The matrices U and V are not unique, but the integers d1, . . . , dr (called the
elementary divisors of A) are unique. In fact, the integer di`1{di is equal to the greatest
common divisor of the determinants of all iˆ i submatrices of A. In particular, d1 is the gcd
of all entries of A. {{{

We can regard the existence of Smith Normal Form as a matrix generalization of Bézout’s
Identity, since it allows us to express the elementary divisors of the matrix (a generalization
of the gcd) in terms of the entries of the matrix. The process of putting a matrix into Smith
Form can be regarded as a matrix generalization of the Euclidean Algorithm.

Theorem (The Euclidean Algorithm for Matrices). Consider any nonzero integer ma-
trix A “ paijq P MatmˆnpZq with m rows and n columns. Then for any integer vector

3Note to self: U and V give the same solution when U´1V and V ´1U have first row equal to p1, 0, . . . , 0q.
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b “ pb1, . . . , bmq we would like to solve the matrix equation Ax “ b. In other words, we would
like to solve the following system of m linear Diophantine equations in n unknowns:

$

’

’

’

&

’

’

’

%

a11x1 ` a12x2 ` ¨ ¨ ¨ ` a1nxn “ b1
a21x1 ` a22x2 ` ¨ ¨ ¨ ` a2nxn “ b2

...
am1x1 ` am2x2 ` ¨ ¨ ¨ ` amnxn “ bm

Now form an augmented matrix by placing identity matrices below and to the right of A:

ˆ

A I

I

˙

 

ˆ

D V

U

˙

Perform a sequence of row and column operations of types I and II until the Smith Normal
FormD appears in the top left. Let d1, . . . , dr be the diagonal entries ofD, with r ă mintm,nu,
and define the vector c “ V b “ pc1, . . . , cmq. If di - ci for some i then the system has no
solution. Otherwise, suppose that we have di|ci (say ci “ dic

1
i) for all 1 ď i ď r. Then the

complete solution of the linear Diophantine system is given by

x “
r
ÿ

i

c1i(ith column of U)`
m´r
ÿ

j“1

kj(r ` jth column of Uq

for all integers k1, . . . , km´r P Z. The sum on the left gives one particular solution and the
sum on the right gives the complete homogeneous solution. {{{

Proof. Included in the statement of existence of Smith Normal Form is the fact that we
can obtain the matrix from D through a sequence of elementary row and column operations.4

Let E1, . . . , Ek and F1, . . . , F` be the (unimodular) matrices corresponding to the elementary
column operations and row operations in our algorithm. Applying these to the augmented
matrix gives

ˆ

A I

I

˙

 

ˆ

F` ¨ ¨ ¨F1AE1 ¨ ¨ ¨Ek F` ¨ ¨ ¨F1I

IE1 ¨ ¨ ¨Ek

˙

“

ˆ

D V

U

˙

,

where the matrices U and V are defined by

U “ E1E2 ¨ ¨ ¨Ek and V “ F` ¨ ¨ ¨F2F1.

Since each of these elementary matrices is unimodular we conclude that U and V are unimod-
ular. Since U is unimodular we may define the following integral change of coordinates:

y “ U´1x ðñ x “ Uy.

4This is implied by the fact that every unimodular matrix can be expressed as a product of elementary
matrices.
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We will also define the vector c “ V b “ pc1, . . . , cmq. Then rewriting the linear system in the
new coordinates gives

Ax “ b

V ´1DU´1x “ b

DU´1x “ V b

Dy “ c
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

d1y1

...
dryr
0yr`1

...
0ym

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˝

c1
...
cm

˛

‹

‚

,

which is easy to solve. Indeed, the system has no solution unless ci “ dic
1
i for all 1 ď i ď r, in

which case the complete solution is given by

y “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

c11
...
c1r
k1
...

km´r

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

for all integers k1, . . . , km´r P Z.

Finally, converting back into x-coordinates gives the claimed solution.

I didn’t yet tell you the algorithm because it’s a bit complicated and there are many different
ways to do it. Here’s a slow and easy version:

(1) Swap rows and columns to place the smallest nonzero entry in the top left corner.

(2) Perform the vector Euclidean algorithm on the first row.

(3) Perform the vector Euclidean algorithm on the first column.

(4) Now you have a matrix of the following form:

A 

¨

˚

˚

˚

˝

d 0 ¨ ¨ ¨ 0

0
...
0

A1

˛

‹

‹

‹

‚

Repeat the algorithm on the submatrix A1.
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(5) If at any point you produce a nonzero entry smaller than d, go back to step (1).

This algorithm is unpredictable because at any point we might have to go back to the begin-
ning. However, with each iteration the smallest matrix entry goes down, hence the process
must eventually stop.

Finally, let’s see an example. Consider the following linear Diophantine system:

"

2x1 ` 4x2 ` 6x3 “ b1,
8x1 ` 10x2 ` 12x3 “ b2.

which we can write in the matrix form Ax “ b:

ˆ

2 4 6
8 10 12

˙

¨

˝

x1
x2
x3

˛

‚“

ˆ

b1
b2

˙

.

For now we will leave the constants b1, b2 P Z undefined. At the end we will determine for
which values of b1 and b2 a solution exists. Now form the augmented matrix and perform the
steps of the matrix Euclidean algorithm:

A I

I
“

2 4 6 1 0
8 10 12 0 1

1 0 0
0 1 0
0 0 1

 

2 0 0 1 0
8 ´6 ´12 0 1

1 ´2 ´3
0 1 0
0 0 1

 

2 0 0 1 0
0 ´6 ´12 ´4 1

1 ´2 ´3
0 1 0
0 0 1

 

2 0 0 1 0
0 6 12 4 ´1

1 ´2 ´3
0 1 0
0 0 1

 

2 0 0 1 0
0 6 0 4 ´1

1 ´2 1
0 1 ´2
0 0 1

“
D V

U

I forgot to mention that we are allowed to scale any row or column by ˘1, though this is not
strictly necessary. (You could call this a unimodular operation of type III. The usual type III
operation—scaling by a nonzero constant—is not unimodular in general.) Since all operations
were unimodular we know that the matrices U and V are unimodular, and we verify that

V AU “

ˆ

1 0
4 ´1

˙ˆ

2 4 6
8 10 12

˙

¨

˝

1 ´2 1
0 1 ´2
0 0 1

˛

‚“

ˆ

2 0 0
0 6 0

˙

“ D.

Now we change variables to y “ U´1x:

Ax “ b

V ´1DU´1x “ b

DU´1x “ V b
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Dy “ V b

ˆ

2 0 0
0 6 0

˙

¨

˝

y1
y2
y3

˛

‚“

ˆ

1 0
4 ´1

˙ˆ

b1
b2

˙

ˆ

2y1
6y2

˙

“

ˆ

b1
4b1 ´ b2

˙

.

It follows that a solution exists if and only if b1 is even and 4b1 ´ b2 is a multiple of 6. For
example, let’s take b1 “ 8 and b2 “ 14, so that

ˆ

2y1
6y2

˙

“

ˆ

b1
4b1 ´ b2

˙

“

ˆ

8
18

˙

ñ

ˆ

y1
y2

˙

“

ˆ

4
3

˙

and y3 “ k is free. We conclude that the Diophantine system

"

2x1 ` 4x2 ` 6x3 “ 8,
8x1 ` 10x2 ` 12x3 “ 14.

has the complete solution

x “ Uy “ U

¨

˝

4
3
k

˛

‚“ 4

¨

˝

1
0
0

˛

‚` 3

¨

˝

´2
1
0

˛

‚` k

¨

˝

1
´2
1

˛

‚“

¨

˝

´2
3
0

˛

‚` k

¨

˝

1
´2
1

˛

‚

for all integers k P Z. Maybe you could have found the solution to this small system more
quickly, but for larger systems there is no shortcut.

3.4 Remarks

Lattice cryptography. GGH, NTRU

Convexity, knapsack, geometry of numbers, Ax ď b.

4 Modular Arithmetic

In the previous chapter we saw that in general it is not possible to “divide” by an integer. For
example, if there exists an integer n P Z with the property 2n “ 1 then we observe that the
following properties are true:

"

1 “ n ¨ 2` 0
0 ď 0 ă |2|

and

"

1 “ 0 ¨ 2` 1
0 ď 1 ă |2|

The properties on the left say that 1 has quotient n and remainder 0 mod 2, while the properties
on the right say that 1 has quotient 0 and remainder 1 mod 2. Since 0 ‰ 1 this contradicts
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the uniqueness of remainders, so we conclude that there is no such integer n P Z. In other
words, it is not possible to “divide by 2” in the system of integers.

One way to fix this situation is to introduce the formal concept of “fractions.” To do this we
consider the following set of abstract symbols:

tra{bs : a, b P Z, b ‰ 0u .

We think of the abstract symbol “ra{bs” as the integer a divided by the nonzero integer b,
even though such a number does not necessarily exist within Z. Based on this intuition we
should have an equivalence relation on symbols defined by

ra{bs „ rc{ds ðñ ad “ bc.

You checked on HW1 that this does indeed define an equivalence relation. Then we define a
rational number as an equivalence class of abstract symbols. For example, the rational number
“1/2” corresponds to the equivalence class

“1{2” “ tr1{2s, rp´1q{p´2qs, r2{4s, rp´2q{p´4qs, r3{6s, rp´3q{p´6qs, . . .u.

Our intuition also tells us that it should be possible to add and multiply rational numbers
using the following rules:

ra{bs ¨ rc{ds “ rpacq{pbdqs

ra{bs ` rc{ds “ rpad` bcq{pbdqs.

Note that the symbols on the right exist because b ‰ 0 and d ‰ 0 implies bd ‰ 0. But there
is still a subtle issue here: each rational number has many different representations; we need
to check that the definitions of addition and multiplication of fractions do not depend on the
choice of representation. For example, our definition of addition says that

r1{2s ` r5{8s “ rp1 ¨ 8` 2 ¨ 5q{p2 ¨ 8qs “ r18{16s.

But we can rewrite these fractions as r1{2s „ rp´3q{p´6qs and r5{8s „ r10{16s and then the
definition of addition gives

rp´3q{p´6qs ` r10{16s “ rpp´3q ¨ 16` p´6q ¨ 10q{pp´6q ¨ 16qs “ rp´108q{p´96qs.

If these notions are to make any sense then it must be the case that

r18{16s „ rp´108q{p´96qs,

and indeed this is true because 18 ¨ p´96q “ ´1728 “ 16 ¨ p´108q. On HW1 you checked that
all of these definitions fit together to create a new number system, the ordered commutative
ring of rational numbers:

pQ,ď,`, ¨, 0, 1q.
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This ring satisfies all of the friendly axioms of Z, except for the Well-Ordering Principle,
but it has the advantage that we can now “divide” by any non-zero number. In abstract-
algebraic terminology we say that Q is a field.

You are probably so familiar with fractions that you forgot how abstract they are.5 Once
upon a time, someone had to invent the concept of a “fractions” and then it took quite a
while before everyone was comfortable calling them “numbers.”

In this chapter we will follow the pattern just described, to define a new family of extensions
of Z out of thin air. These are less familiar than the rational numbers but they have more
number-theoretic interest. At the end of the chapter I’ll explain how these new number systems
are central to modern cryptography.

4.1 Equivalence Mod n

To define the rational numbers we considered an equivalence relation on a set of abstract
symbols. To define our new number system we will consider an unusual equivalence on the
usual set of integers.

Throughout this section we fix a positive integer n ą 0.

Definition. Given integers a, b P Z we will define the relation ”n by

a ”n b ðñ n|pa´ bq.

When a ”n b holds we say that a and b are equivalent modulo n. ///

Before doing anything else let’s check that ”n is indeed an equivalence relation:

(1) Reflexive. For all a P Z we have n|pa´ aq because pa´ aq “ 0 “ n ¨ 0. Thus by definition
we have a ”n a.

(2) Symmetric. Consider a, b P Z and assume that a ”n b so that n|pa ´ bq. By definition
this means that there exists an integer q P Z such that a´ b “ nq. But then we have

a´ b “ nq

b´ a “ np´qq,

and hence n|pb´ aq. It follows that b ”n a as desired.

(3) Transitive. Consider a, b, c P Z and assume that we have a ”n b and b ”n c. By definition
this means that there exist integers q, q1 such that a ´ b “ nq and b ´ c “ nq1. But then we
have

a´ c “ pa´ bq ` pb´ cq

“ nq ` nq1

5Indeed, the concept of “adding fractions” signals the end of most people’s mathematical careers.
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“ npq ` q1q,

and hence n|pa´ cq. It follows that a ”n c as desired. ///

We conclude that the relation”n is an equivalence on the set of integers. This gives us infinitely
many new equivalence relations on Z in addition to our favorite equivalence “=”. Now recall
that an equivalence relation on a set determines a partition of the set into equivalence classes.

Definition. For each a P Z consider the set of elements b P Z that are equivalent to a mod n:

rasn :“ tb P Z : a ”n bu.

///

We can be more explicit here; for all a P Z I claim that

rasn “ pnZ` aq :“ tnk ` a : k P Zu
“ t. . . , a´ 2n, a´ n, a, a` n, a` 2n, . . .u.

To see that rasn Ď pnZ`aq, consider any b P rasn. By definition this means that n|pb´aq and
hence we have pb´aq “ nk for some k P Z. But then we have b “ nk`a and hence b P pnZ`aq
as desired. Conversely, to see that pnZ ` aq Ď rasn, consider any element b P pnZ ` aq. By
definition this means that b “ nk`a for some k P Z and then we have pb´aq “ nk. It follows
that n|pb´ aq and hence b P rasn as desired.

A nice thing about this notation is that we can replace the abstract concept of equivalence of
integers mod n with the concrete concept of equality of equivalence classes.

Equality of Equivalence Classes. For all a, b P Z we have

a ”n b ðñ rasn “ rbsn.

Proof. Assume that a ”n b so that a “ nk ` b for some k P Z. Then we have

c P rasn ñ c “ n`` a for some ` P Z
ñ c “ n`` pnk ` bq

ñ c “ np`` kq ` b

ñ c P rbsn,

and conversely,

c P rbsn ñ c “ nm` b for some m P Z
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ñ c “ nm` pa´ nkq

ñ c “ npm´ kq ` a

ñ c P rasn.

We conclude that rasn “ rbsn as desired. Next assume that rasn “ rbsn. Then, in particular,
since b is equivalent to itself we must have b P rbsn “ rasn and it follows that a ”n b as desired.

Now let „ be a general equivalence relation on a general set S and for each element x P S let
rxs„ :“ tx1 P S : x1 „ xu denote the equivalence class of x. If S is not empty then we can
choose an element x1 P S and then we can express S as a disjoint union

S “ rx1s„ > S
1,

where S1 Ď S is the set of elements that are not equivalent to x1. Now if S1 is not empty then
we can choose an element x2 P S

1 to obtain a disjoint union

S “ rx1s„ > rx2s„ > S
2,

where S2 Ď S are the elements that are equivalent to neither of x1 and x2. Continuing in
this way, we obtain a partition of the set

S “
ž

iPI

rxis„,

where I is an indexing set and the elements xi are some arbitrary choice of class representatives.
If S is an infinite set then the sets I and rxis„ might be infinite or finite; there is not much
we can say in general.

But now let us return to the equivalence relation ”n on the set of integers Z. In this case
there is a lot we can say.

Theorem (Division With Remainder, Fancy Version). Let n be a positive integer.
Then I claim that Z decomposes as a disjoint union of the following n equivalence classes:

Z “ r0sn > r1sn > r2sn > ¨ ¨ ¨ > rn´ 1sn.

Proof. Consider any a P Z. Since n ą 0 there exist integers q, r P Z such that

"

a “ qn` r
0 ď r ă n
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Then since pa ´ rq “ nq we see that a ”n r and hence a P rrsn. We have shown that every
integer is contained in some equivalence of the form rrsn for some 0 ď r ă n. In other words
we can express Z as a union of n equivalence classes:

Z “ r0sn Y r1sn Y r2sn Y ¨ ¨ ¨ Y rn´ 1sn.

To show that this union is disjoint, assume for contradiction that two of the classes overlap:
say that a P rrsn X rr

1sn for some 0 ď r ă r1 ă n. The fact that a P rrsn tells us that r is the
remainder of a mod n and the fact that a P rr1sn tells us that r1 is the remainder of a mod n.
But this contradicts the uniqueness of remainders because r ‰ r1.

The key to this proof is to express each equivalence class rasn in the “standard form” rasn “
rrsn where r is the remainder of a mod n. You should compare this to the concept of “lowest
terms” for fractions: for each fraction ra{bs P Q there is a unique way to write

ra{bs „ ra1{b1s

where gcdpa1, b1q “ 1 and b1 is strictly positive. When computing with fractions we know that
we can reduce to lowest terms at any time without affecting the result of the computation.
In the next section we will show that the same idea holds for computations with remainders
mod n.

4.2 Addition and Multiplication of Remainders

In the previous section we showed that Z can be written as a disjoint union of n equivalence
classes mod n. Using the alternate notation rasn “ pnZ` aq we can write this as

Z “ pnZq > pnZ` 1q > ¨ ¨ ¨ > pnZ` n´ 1q.

The class nZ is called an ideal of the ring pZ,`, ¨, 0, 1q because it is closed under “integer linear
combinations.” In other words, for any two elements nk, n` in nZ and for any two integers
x, y P Z we have

xpnkq ` ypn`q “ npxk ` y`q P nZ.
And for any integer a P Z, the class pnZ` aq is called the coset of nZ generated by a. We will
use that standard abstract-algebraic notation “Z{nZ” for the set of all cosets of the subgroup
nZ Ď Z. Then from the previous theorem we obtain the following.

Definition. Given an integer n ą 0 we denote the set of equivalence classes mod n by

Z{nZ :“ tr0sn, r1sn, r2sn, . . . , rn´ 1snu.

///

We can think of Z{nZ as the set of possible remainders upon division by n. Indeed, when the
context is very clear we might shorten the notation to And if the context is very clear, we
might occasionally shorten this to

Z{nZ “ t0, 1, 2, . . . , n´ 1u.
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The problem for this section is whether we can add and multiply remainders mod n. For
example, consider the numbers 9 and 10 as remainders mod 12. Their sum 9 ` 10 “ 19 and
product 9 ¨ 10 “ 90 are not valid remainders mod 12 but the following equations are valid:

r9` 10s12 “ r19s12 “ r7s12

r9 ¨ 10s12 “ r90s12 “ r6s12.

Thus we would like to say that “9 ` 10 “ 7” and “9 ¨ 10 “ 6” mod 12, and because of the
First Amendment we are free to say this.

Definition(?). Fix an integer n ą 0. Then for all integers a, b P Z we define the sum and
product of equivalence classes as follows:

rasn ` rbsn :“ ra` bsn

rasn ¨ rbsn :“ rabsn.

///

However, just because we can say it doesn’t mean that it makes any sense. To turn this
definition(?) into a real definition we have to show that it does not logically contradict itself.

Theorem. For all a, a1, b1, b1 P Z with rasn “ ra
1sn and rbsn “ rb

1sn we have

ra` bsn “ ra
1 ` b1sn

rabsn “ ra
1b1sn.

In other words, we say that addition and multiplication of remainders is well-defined. ///

Proof. Assume that rasn “ rbsn and ra1sn “ rb
1sn so there exist integers k, ` P Z such that

pa´ a1q “ nk and pb´ b1q “ n`. Then we have

pa` bq ´ pa1 ` b1q “ pa´ a1q ` pb´ b1q

“ nk ` n`

“ npk ` `q,

from which it follows that ra` bsn “ ra
1 ` b1sn, and we have

pabq ´ pa1b1q “ ab´ a1b` a1b´ a1b1

“ pa´ a1qb` a1pb´ b1q

“ nkb` an`

“ npkb` a`q,

from which it follows that rabsn “ ra
1b1sn.
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We have obtained a finite set Z{nZ with two (well-defined) binary operations

`, ¨ : pZ{nZq ˆ pZ{nZq Ñ Z{nZ.

Since these operations are “inherited” from the integers, it is easy to check that both “`”
and “¨” commutative and associative and that “¨” distributes over “`”. Note that we have an
identity element for addition,

rasn ` r0sn “ rasn @a P Z,

and for each element rasn P Z{nZ we have an additive inverse:

rasn ` r´asn “ r0sn.

Since this inverse is unique we will write “ ´ rasn” “ r´asn. Furthermore, if n ě 2 then we
also have an identity element for multiplication:

rasn ¨ r1sn “ rasn @a P Z.

In summary, for each integer n ě 2 we have obtained a new commutative ring, which we call
the ring of integers mod n:

pZ{nZ,`, ¨, r0sn, r1snq.

This ring shares some properties in common with Z and Q but it is also quite different, the
key difference being that Z{nZ is a finite ring. Here is one consequence of finiteness.

Fact. It is impossible to give pZ{nZ,`, ¨, r0sn, r1snq the structure of an ordered ring. ///

Proof. Assume for contradiction that Z{nZ carries an order structure “ď”. One of the axioms
of order says that

r0sn ă r1sn.

Another axiom of order says that inequalites are preserved by addition, so we must also have

r0sn ` r1sn ă r1sn ` r1sn

r0` 1sn ă r1` 1sn

r1sn ă r2sn.

By successively adding r1sn to both sides we eventually obtain the inequality

rn´ 1sn ă rnsn “ r0sn,

and then by transitivity we conclude that r1sn ă r0sn, which is a contradiction.

Additive cancellation holds in Z{nZ, as it does in any ring. But recall that multiplicative
cancellation in Z was a consequence of its order structure. You will not be surprised, then, to
find out that multiplicative cancellation does not generally hold in Z{nZ. Even worse, we the
ring Z{nZ may contain zero divisors.

For example:
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• Let n “ 6 and consider the elements r2s6 and r3s6 of the ring Z{6Z. By uniqueness of
remaindes mod 6 we know that r2s6 ‰ r0s6 and r3s6 ‰ r0s6. On the other hand, we have

r2s6 ¨ r3s6 “ r2 ¨ 3s6 “ r6s6 “ r0s6.

• It follows from this that we cannot “multiplicatively cancel r2s6” in the ring Z{6Z.
Indeed, multiplicative cancellation would imply that we have

r2s6 ¨ rxs6 “ r2s6 ¨ rys6 ñ rxs6 “ rys6

for all elements rxs6, rys6 P Z{6Z. But rxs6 “ r3s6 and rys6 “ r0s6 is a counterexample.

• Finally, this implies that there is no element in Z{6Z that deserves to be called r1{2s6.
Indeed, suppose for contradiction that there exists an element rxs6 P Z{6Z with the
property r2s6 ¨rxs6 “ r1s6. Then by multiplying both sides of the equation r2s6 ¨r3s6 “ r0s6
by rxs6 we would obtain

r2s6 ¨ r3s6 “ r0s6

rxs6 ¨ r2s6 ¨ r3s6 “ rxs6 ¨ r0s6

r1s6 ¨ r3s6 “ rxs6 ¨ r0s6

r3s6 “ r0s6,

which is a contradiction.

In the next section we will investigate the full story behind this example.

4.3 Euler’s Totient Function

We have seen that the element r2s6 has no “multiplicative inverse” in the ring Z{6Z. This
means that there is no element rxs6 P Z{6Z with the property

r2s6 ¨ rxs6 “ r1s6.

However, if we work modulo 7 then we have

r2s7 ¨ r4s7 “ r8s7 “ r1s7,

which says that the element r4s7 behaves like the number “1{2 modulo 7”. Furthermore, this
element is unique. Indeed, suppose that we had another multiplicative inverse r2s7 ¨rxs7 “ r1s7.
Then the associative property gives

rxs7 “ r1s7 ¨ rxs7 “ pr4s7 ¨ r2s7q ¨ rxs7 “ r4s7 ¨ pr2s7 ¨ rxs7q “ r4s7 ¨ r1s7 “ r4s7.

Then since the element is unique we can give is a special name. For abstract-algebraic reasons
we prefer to use negative exponents instead of fractional notation.
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Definition. If the element rasn P Z{nZ has a (necessarily unique) multiplicative inverse then
we will denote this inverse by ra´1sn, so that

rasn ¨ ra
´1sn “ r1sn.

For all natural numbers k P N we will denote k-th power of the inverse by

ra´ksn :“ pra´1snq
k “ ra´1sn ¨ ra

´1sn ¨ ¨ ¨ ¨ ¨ ra
´1sn

loooooooooooooooomoooooooooooooooon

k times

Thus the notation raksn makes sense for all integers k P Z. One can check that this notation
satisfies the usual properties of exponents; in particular, we see that every power of rasn is
invertible because

raksn ¨ ra
´ksn “ ra

0sn “ r1sn.

///

Generalizing the above example, we can show that 2 is invertible mod n for any odd number
n. Indeed, suppose that n “ 2k ´ 1 for some integer k P Z. Then we have

r2sn ¨ rksn “ r2ksn “ rn` 1sn “ r1sn

and hence r2´1sn “ rksn. On the other hand, if n is an even number then 2 is not invertible
mod n. Indeed, if n “ 2` for some ` P Z then we have

r2sn ¨ r`sn “ r2`sn “ rnsn “ r0sn,

and it follows from the above arguments that r2sn can have no multiplicative inverse. Here is
the general situation.

Theorem (Existence of Multiplicative Inverses Mod n ). Let n be a fixed positive
integer. Then the element rasn P Z{nZ has a multiplicative inverse if and only if gcdpa, nq “ 1.
Moreover, this inverse can be computed efficiently using the Euclidean Algorithm. ///

Proof. First assume that gcdpa, nq “ 1. Then the Euclidean Algorithm gives us (non-unique)
integers x, y P Z with the property

ax` ny “ 1.

By rearranging this equation we obtain

pax´ 1q “ np´yq ùñ n|pax´ 1q

ùñ paxq ”n 1

ùñ raxsn “ r1sn

ùñ rasn ¨ rxsn “ r1sn,
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and we conclude that rxsn is the multiplicative inverse of a mod n. Conversely, suppose that
the multiplicative inverse rxsn “ ra

´1sn exists. Then the equation rasn ¨ rxsn “ r1sn gives

raxsn “ r1sn ùñ paxq ”n 1

ùñ n|pax´ 1q

ùñ pax´ 1q “ nq for some q P Z
ùñ ax` np´qq “ 1 for some q P Z.

Now we want to show that gcdpa, nq “ 1. So let d be any common divisor of a and n, with
a “ da1 and n “ dn1. Substituting these into the previous equation gives

ax` np´qq “ 1

pda1qx` pdn1qp´qq “ 1

dpa1x´ n1qq “ 1,

which implies that d divides 1. But the only integers that divide 1 are d “ ˘1 and so we
conclude that the greatest common divisor of a and n is d “ 1.

For example, let us try to compute the multiplicative inverse of 71 modulo 1024. We consider
the collection of integer triples px, y, zq P Z3 satisfying 1024x ` 71y “ z. Then the Vector
Euclidean Algorithm gives:

x y z

1 0 1024
0 1 71
1 ´14 30

´2 29 11
5 ´72 8

´7 101 3
19 ´274 2
´26 375 1

71 ´1024 0

The second to last row says that

1024p´26q ` 71p375q “ 1,

from which we conclude that 71 is invertible mod 1024 with inverse

r71´1s1024 “ r375s1024.

[If the algorithm had stopped with gcdp71, 1024q ‰ 1 then we would have concluded that 71
is not invertible mod 1024.] ///

In a commutative ring pR,`, ¨, 0, 1q, the element 0 never has a multiplicative inverse [why
not?] and the element 1 always has a multiplicative inverse; namely itself. In general we
denote the collection of invertible elements by

Rˆ :“ tr P R : there exists a (unique) element s P R with the property rs “ 1u
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and we call this the group of units of the ring R. The name is meant to indicate that the
triple pRˆ, ¨, 1q has the structure of a group. [It is a set with an associative binary operation
and an identity element, in which each element has a (necessarily unique) inverse.] Now we
can rephrase the previous theorem as follows.

Theorem (The Group of Units of Z{nZ ). Fix a positive integer n ą 0 and consider the
ring Z{nZ of integers modulo n. Its group of units is given by

pZ{nZqˆ “ trasn : gcdpa, nq “ 1u.

///

For example, we have

pZ{6Zqˆ “ tr1s6, r5s6u,
pZ{7Zqˆ “ tr1s7, r2s7, r3s7, r4s7, r5s7, r6s7u,
pZ{8Zqˆ “ tr1s8, r3s8, r5s8, r7s8u.

Observe that the sum of two elements in pZ{nZqˆ is not necessarily in pZ{nZqˆ so this is just
a group; not a ring. The remainder of this chapter will be devoted to studying the structure
of this group. To begin we will look at “exponentiation mod n.”

For example, consider the element r71s1024 P pZ{1024Zqˆ. We saw above that r71´1s1024 “
r375s1024. Here are the first few positve powers of 71 mod 1024:

r712s1024 “ r5041s1024 “ r945s1024,

r713s1024 “ r712s1024 ¨ r71s1024 “ r945s1024 ¨ r71s1024 “ r67095s1024 “ r535s1024

r714s1024 “ r713s1024 ¨ r71s1024 “ r535s1024 ¨ r71s1024 “ r37987s1024 “ r97s1024

r715s1024 “ r743s1024

r716s1024 “ r529s1024

r717s1024 “ r695s1024
...

The sequence of powers
1, 71, 945, 535, 97, 743, 529, 695, . . .

looks pretty random.6 However, because pZ{1024Zqˆ is a finite set we do know that the
sequence must contain some repeated element. That is, there must exist two integers 0 ă k ă `
with the property that

r71ks1024 “ r71`s1024.

6It is called pseudo-random.
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Then multiplying both sides of this equation by the inverse element

r71´ks1024 “ pr71´1s1024q
k “ pr375s1024q

k “ r375ks1024

gives

r71ks1024 “ r71`s1024

r71ks1024 ¨ r71´ks1024 “ r71`s1024 ¨ r71´ks1024

r1s1024 “ r71`´ks1024.

We conclude that there exists some natural number m ě 1 with the property that r71ms1024 “
r1s1024. By the Well-Ordering principle there must be a smallest such number.

Definition. For any element rasn P pZ{nZqˆ let ordnpaq be the smallest positive integer
with the property

raordnpaqsn “ r1sn.

We call ordnpaq the multiplicative order of a mod n. ///

The numbers ordnpaq are unpredictable in general but they do satisfy some important restric-
tions. For example, here are the multiplicative orders for the elements of pZ{7Zqˆ:

ras7 r1s7 r2s7 r3s7 r4s7 r5s7 r6s7
ord7paq 1 3 6 3 6 2

Note that all of these numbers divide the size of the group: 6 “ pZ{7Zqˆ. Leonhard Euler
proved in 1750 that this phenomenon holds in general.

Euler’s Totient Theorem. Fix a positive integer n ą 0 and let

ϕpnq :“ #pZ{nZqˆ,

i.e., let ϕpnq is the number of integers 0 ă a ă n that are coprime to n.7 Then for all integers
a P Z satisfying gcdpa, nq “ 1, the following two properties hold:

• We have raϕpnqsn “ r1sn.

• If radsn “ r1sn then we have d|φpnq.

In particular, the multiplicative order ordnpaq divides ϕpnq. ///

Proof. We don’t know exactly what the elements of pZ{nZqˆ are, but at least we know that
there are ϕpnq of them. Thus we can write

pZ{nZqˆ “ trc1sn, rc2sn, . . . , rcϕpnqsnu
7J.J. Sylvester in 1879 called this Euler’s totient function. Sylvester was always coming up with ridiculous

mathematical terminology, some of which has stuck.
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for some distinct class representatives 0 ă c1, c2, . . . , cϕpnq ă n. Now consider any integer
a P Z with gcdpa, nq “ 1. In this case I claim that we also have

pZ{nZqˆ “ trac1sn, rac2sn, . . . , racϕpnqsnu.

Indeed, for each index i we must have racisn P pZ{nZqˆ and hence we must have racisn “ rcjsn
for some index j. But since rasn is invertible (and hence cancellable) we know that

racisn “ racjsn ðñ rasn ¨ rcisn “ rasn ¨ rcjsn

ðñ rcisn “ rcjsn.

Now we will multiply all of the elements of pZ{nZqˆ together. I don’t know which element of
pZ{nZqˆ this gives me but I do have two different ways to express it:

rc1sn ¨ rc2sn ¨ ¨ ¨ ¨ ¨ rcϕpnqsn “ rac1sn ¨ rac2sn ¨ ¨ ¨ ¨ ¨ racϕpnqsn

rc1c2 ¨ ¨ ¨ cϕpnqsn “ rac1ac2 ¨ ¨ ¨ acϕpnqsn

rc1c2 ¨ ¨ ¨ cϕpnqsn “ ra
ϕpnqc1c2 ¨ ¨ ¨ cϕpnqsn

rc1c2 ¨ ¨ ¨ cϕpnqsn “ ra
ϕpnqsn ¨ rc1c2 ¨ ¨ ¨ cϕpnqsn.

Now we can multiply both sides by the inverse of rc1c2 ¨ ¨ ¨ cϕpnqsn (whatever it is) to obtain

r1sn “ ra
ϕpnqsn.

Finally, recall that ordnpaq is the smallest positive integer satisfying raordnpaqsn “ r1sn. Now
divide ϕpnq by ordnpaq to obtain a quotient and remainder:

"

ϕpnq “ q ¨ ordnpaq ` r
0 ď r ă ordnpaq

The first equation tells us that

r1sn “ ra
ϕpnqsn

“ raq¨ordnpaq`rsn

“ praordnpaqsnq
q ¨ rarsn

“ pr1snq
q ¨ rarsn

“ rarsn.

If 0 ă r then this contradicts the minimality of ordnpaq, so we conclude that r “ 0 and hence
ordnpaq|ϕpnq as desired.

For example, let’s compute ϕp1024q. Since 1024 “ 210 is a power of 2 we have gcdpa, 1024q if
and only if a is odd. In other words, we have

pZ{1024Zqˆ “ tr1s1024, r3s1024, r5s1024, . . . , r1023s1024u.
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Since exactly half of the numbers are odd we conclude that

ϕp1024q “ #pZ{1024Zqˆ “ 1024{2 “ 512 “ 29,

and then it follows from Euler’s Totient Theorem that the multiplicative order of any element
ras1024 satisfies:

ord1024paq P td P N : d|512u “ t1, 2, 4, 8, 16, 32, 64, 128, 356, 512u.

This cuts down on the work necessary to compute ord1024p71q, but it’s still not trivial. My
computer used a brute-force method to find that

ord1024p71q “ 128.

A Party Trick. Have you ever looked at a sequence of powers and noticed that the final digit
repeats? For example, consider the powers of 3 and note that the final digits cycle through
the sequence 1, 3, 9, 7:

1, 3, 9, 27, 81, 243, 729, 2187, . . . .

This phenomenon is explained by Euler’s Theorem. Indeed, note that

pZ{10Zqˆ “ tr1s10, r3s10, r7s10, r9s10u

and hence we have ϕp10q “ 4. Then for any integer a P Z coprime to 10, Euler’s Theorem
says that

ra4s10 “ r1s10.

Furthermore, for any integer n “ 4q ` r we have

rans10 “ ra
4q`rs10 “ pra

4s10q
q ¨ rars10 “ pr1s10q

q ¨ rars10 “ ra
rs10.

When q and r are the quotient and remainder of n mod 4 then we conclude that

rans10 “

$

’

’

’

’

&

’

’

’

’

%

r1s10 if n P r0s4

ras10 if n P r1s4

ra2s10 if n P r2s4

ra3s10 if n P r3s4

Since 3 is coprime to 10 this explains our observation about the powers of 3. In fact, you
will show on HW3 that for q ě 0 and r ě 1 we still have ra4q`rs10 “ rars10 even when
gcdpa, 10q ‰ 1.

You can use this trick at a party to impress people by calculating the final digit of a large
power by hand. However, if your friends notice the “mod 4 repetition” then they might not
be very impressed. To be safe you should learn how to compute the final two digits. For
this trick we need to know that

ϕp100q “ 40.
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I’ll show you a quick way to compute this in the next section; for now we’ll just take it as
given. Now for any power an, observe that the final two digits are given by the reduced form
of rans100. If gcdpa, 100q “ 1 and if n “ 40q` r then the same argument as above tells us that

rans100 “ ra
rs100.

And when q ě 0 and r ě 2 then the result from HW3 says that the same equation still holds
for gcdpa, 100q ‰ 1. This guarantees that you will never have to compute a higher exponent
than 39. For optimum effect you should arrange for the exponent to be 2 more than than a
multiple of 40. For example, you could say:

Give me any number “a” and I’ll compute the final two digits of “a42”.

Then since ra42s100 “ ra
2s100 you just need to compute a2 (which isn’t so hard) and tell them

the final two digits. ///

In the next two sections we will develop a general formula for the Euler totient function. Then
in the final section of the chapter we will apply this formula to cryptography.

4.4 Unique Prime Factorization

To compute the totient function ϕpnq we first need to compute the “prime factorization” of
the integer n P Z. So far we have only discussed coprimality in this class; now it is finally
time to discuss primality. I postponed the concept of primality until now because it’s more
subtle than you might think.

What is a prime number? Observe that every integer n P Z has two trivial factorizations:

n “ 1 ¨ n and n “ p´1qp´nq.

Any other factorization n “ ab with a, b P Zzt˘1u is called non-trivial. We want to say that
n P Z is prime when it has no non-trivial factorization, but there are a few issues here:

• Are we allowed to have negative prime numbers?

• Are the numbers `1 and ´1 prime?

• What about 0?

There are no completely satisfying answers to these questions and you will find books with
differing opinions. I will base my definition of primality on two considerations:

• Aesthetics: I want the statements of big theorems to be as simple as possible.

• Generality: I want my definition to generalize correctly to other commutative rings.

For these reasons I will first state the definition of primality for a general commutative ring
R and then we will restrict this definition to the integers Z. Recall that the collection of
invertible elements in a ring is called the “group of units” Rˆ. If u P Rˆ (i.e., if there exists
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a multiplicative inverse u´1) then u necessarily divides every element of the ring. Indeed, for
all r P R we have

r “ 1r “ puu´1qr “ upu´1rq.

Thus, from the point of view of divisibility we should ignore the units of the ring. And
what about the zero element 0 P R? From a sophisticated point of view I would say that 0 is
prime if and only if the ring R contains no zero-divisors. But that’s a bit too sophisticated
for this course, so here I will just say that 0 is not prime.

Defininition (Primality in a Commutative Ring). Let R be a general commutative ring.
We say that an element p P R is prime when:

• p is not zero,

• p is not a unit,

• if p “ rs for some r, s P R then either r or s is a unit (but not both).

///

We will return to this definition in the next chapter when we study primality in the ring of
“Gaussian integers” Zr

?
´1s. For now we restrict our attention to the “plain old integers” Z.

Recall that the invertible integers are just ˘1:

Zˆ “ t´1,`1u.

Definition (Primality in Z). Let p be an integer. We say that p is prime when:

• p R t´1, 0, 1u,

• if p “ ab for some a, b P Z then either a “ ˘1 or b “ ˘1 (but not both).

///

The notion of primality is not affected by multiplication by units. Thus the prime integers
come in positive-negative pairs:

˘2,˘5,˘7,˘11, etc.

The possibility of negative primes makes the following proofs cleaner, but you can ignore the
negative primes when it comes to applications.

For the rest of this section I will present the Fundamental Theorem of Arithmetic, which says
that every (non-zero, non-unit) integer can be written as a product of prime integers in an
(essentially) unique way. These results were originally proved in Books VII and IX of Euclid’s
Elements (c. 300 BC).8

8This is also where we get the Euclidean Algorithm and Euclid’s Lemma.
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Theorem (Existence of Prime Factors in Z). Every integer n R t´1, 0, 1u is divisible by
a prime integer. ///

Proof. Note that for all n, p P Z we have p|n if and only if p|p´nq. Thus we can restrict
our attention to positive integers. So assume for contradiction that there exists an integer
n ě 2 with no prime factor. Then by the Well-Ordering Principle there exists a smallest
such integer; call it m ě 2. Since m divides itself (i.e., m “ 1m) and since by assumption m
has no prime factor, it must be the case that m is not prime. By definition this means that
there exists a “non-trivial” factorization

m “ ab

in which neither of a or b is a unit. Since ab “ p´aqp´bq and since a is not a unit we can
assume without loss of generality that a ě 2. Since a|m we must also have a ď m, but if
a “ m then m “ ab implies that b “ 1, which contradicts the fact that b is not a unit. Thus
we conclude that 2 ď a ď m ´ 1. Since m was the smallest positive integer with no prime
factor, this implies that a has a prime factor, say a “ pa1. Finally, we conclude that m itself
has a prime factor since

m “ ab “ ppa1qb “ ppa1bq,

and this is the desired contradiction.

For the next theorem I will use a common mathematical convention: Let S Ď Z be any finite
collection of integers and let n “

ś

sPS s denote the product of these integers. For |S| ě 2 this
product is well-defined because of the commutative and associative laws of multiplication. In
the cases S “ tsu or S “ H we say by convention that n “ s or n “ 1, respectively. That is:

a product of no numbers equals 1.

Theorem (Existence of Prime Factorization in Z). Every non-zero integer can be
expressed as a unit times a product of prime numbers. ///

Proof. Consider 0 ‰ n P Z. If n is a unit or a prime then we are done. Otherwise, we know
from the previous theorem that there exists a prime factor, say n “ pn1. If n1 is a unit or a
prime then we are done. Otherwise, n1 has a prime factor, say n1 “ p1n2. If n2 is a prime or
a unit then we are done; otherwise we continue. When this process stops we will obtain the
desired factorization.

To prove that the process does stop, observe that the integers n, n1, n2 from above satisfy
|n| ą |n1| ą |n2|. If the process continues forever then we will obtain an infinite decreasing
sequence of positive integers

|n| ą |n1| ą |n2| ą |n3| ą ¨ ¨ ¨ ą 0,

which violates the Well-Ordering Principle.
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We have now proved that every non-zero integer can be written as a unit times a product of
primes. For example, the number ´30 can be written as

´30 “ p´1q ¨ 2 ¨ 3 ¨ 5

“ 1 ¨ p´2q ¨ 3 ¨ 5

“ 1 ¨ 2 ¨ p´3q ¨ 5

“ 1 ¨ 2 ¨ 3 ¨ p´5q

“ p´1q ¨ p´2q ¨ p´3q ¨ 5

...

“ 1 ¨ p´5q ¨ p´3q ¨ p´2q

There are lots of ways (48 ways, in fact) to write this factorization, but the the differences are
only cosmetic; all I have done is rearranged the units and permuted the prime factors. Our
final theorem says that prime factorization is unique except for these trivial rearrangements.

Theorem (Uniqueness of Prime Factorization in Z). Consider a non-zero integer n P Z
and suppose that we have

n “ ˘p1p2 ¨ ¨ ¨ pk “ ˘q1q2 ¨ ¨ ¨ q`

where the integers p1, . . . , pk, q1, . . . , qk P Z are all prime. In this case I claim that k “ `, and
furthermore I claim that we can permute the indices so that

p1 “ ˘q1, p2 “ ˘q2, . . . , pk “ ˘qk.

///

To prove this we need a lemma. This is the original version of Euclid’s Lemma from Euclid’s
Elements (Proposition VII.30).

Euclid’s Lemma (Prime Version). Let p P Z be prime. Then for all a, b P Z we have

pp|abq ñ pp|a_ p|bq.

///

Proof of the Lemma. Let p be prime. We will assume that p|ab and p - a and this case we
will show that p|b. Recall from our original version of Euclid’s Lemma that

pp|ab^ gcdpa, pq “ 1q ñ pp|bq.

Thus we will be done if we can show that d :“ gcdpa, pq equals 1. Recall that the gcd satisfies
1 ď d ď |p|. Since d|p we have p “ dp1 for some p1 P Z. Then since p is prime it must be the
case that d is a unit (i.e., d “ 1) or that p1 is a unit (i.e., d “ |p|). On the other hand, the case
d “ |p| is impossible because we have d|p and a - p. We conclude that d “ 1 as desired.
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Proof of the Theorem. Suppose that we have

(UF) p1p2 ¨ ¨ ¨ pk “ ˘q1q2 ¨ ¨ ¨ q`

for some primes p1, . . . , pk, q1, . . . , q` P Z and assume without loss of generality that k ď `.
Since p1 divides the left hand side it also divides the right hand side: p1|pq1q2 ¨ ¨ ¨ q`q. Since
p1 is prime, by Euclid’s Lemma this means that p1 divides qi for some i. After relabeling the
primes qi we can assume without loss of generality that p1|q1, say q1 “ p1u. Since q1 is prime
and since p1 (being prime) is not a unit, this implies that u is a unit and we conclude that
p1 “ ˘q1. Now we apply multiplicative cancellation to the equation (UF) to obtain

p2 ¨ ¨ ¨ pk “ ˘q2 ¨ ¨ ¨ q`

By repeating the argument and relabeling the primes qi as necessary we will find that p2 “
˘q2, . . . , pk “ ˘qk. Finally, we assume for contradiction that ` ě k ` 1. After canceling the
first k factors we obtain the equation

1 “ ˘qk`1 ¨ ¨ ¨ q`,

which implies that qk`1|1. But then we must have qk`1 “ ˘1 which contradicts the fact that
qk`1 (being prime) is not a unit.

In summary, each non-zero integer n P Z has a unique prime factorization. It is often conve-
nient to express this in the following form:

Denote the positive primes by 2 “ p1 ă p2 ă p3 ă ¨ ¨ ¨ . Then for all 0 ‰ n P Z
there exists a unique sequence of non-negative exponents e1, e2, e3, e4, . . . (all but
finitely many equal to zero) such that

n “ ˘pe11 p
e2
2 p

e3
3 p

e4
4 ¨ ¨ ¨

Exercises. The language of unique factorization gives us a new way to think about divisibility.
For these exercise we will fix two non-zero integers a, b P Z with unique prime factorizations

a “ ˘pa11 p
a2
2 p

a3
3 ¨ ¨ ¨ ,

b “ ˘pb11 p
b2
2 p

b3
3 ¨ ¨ ¨ .

(a) Prove that a|b if and only if ai ď bi for all i.

(b) Prove that the greatest common divisor is given by

gcdpa, bq “ p
minpa1,b1q
1 p

minpa2,b2q
2 p

minpa3,b3q
3 ¨ ¨ ¨ .

(c) Find a similar formula for the least common multiple lcmpa, bq and use it to prove that

gcdpa, bq ¨ lcmpa, bq “ ab.
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{{{

To end this section let me present two proofs that the number of primes is infinite. The first
is a classic argument and the second is an application of unique prime factorization.

Theorem. There are infinitely many prime numbers. {{{

Euclid’s Proof. We will show that any list of primes is incomplete. So let p1, p2, . . . , pk be
any list of primes and consider the number

n “ p1p2 ¨ ¨ ¨ pk ` 1.

We observe that n ”pi 1 for all i. On the other hand, we know that n has some prime factor
p|n. If p “ pi for some i then we obtain the contradiction 1 ”p n ”p 0. Therefore this p is not
in the list p1, . . . , pk.

Another Proof. For every integer n ě 2 we will show that there exists a prime number
greater than n. For this purpose we define the number

N “ n!` 1 “ npn´ 1qpn´ 2q ¨ ¨ ¨ 3 ¨ 2 ¨ 1` 1.

We know that N has some prime factor p|N . I claim that this factor must satisfy p ą n. To
see this, assume for contradiction that 2 ď p ď n. Then we have p|N and p|n! which implies
that p|1. Contradiction.

4.5 Chinese Remainder Theorem

Finally, we will use the unique prime factorization of a positive integer n to compute the value
of the Euler totient function ϕpnq. Let me state the result right away and then we will work
up to the proof.

Theorem (Value of the Totient Function). Let n be a positive integer. Then the totient
function is given by

ϕpnq “ n ¨
ź

p|n

p´ 1

p
,

where the product is taken over the distinct positive prime factors of n. ///

For example, our Party Trick used the fact that ϕp100q “ 40. Now we can see why this is
true. The prime factorization 100 “ 22 ¨ 52 shows us that the distinct prime factors of 100 are
2 and 5. Then the formula gives

ϕp100q “ 100 ¨
1

2
¨

4

5
“ 40.
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The theorem depends on two lemmas. The first one is straightforward.

Lemma 1 (Totient of a Prime Power). Consider two positive integers p, n where p is
prime. Then we have

ϕppnq “ ppn ´ pn´1q “ pn
ˆ

1´
1

p

˙

“ pn ¨
p´ 1

p
.

///

Proof. I claim that for all a P Z we have

gcdpa, pnq “ 1 ðñ p - a.

To give a quick9 proof of this we will apply unique prime factorization. Suppose that some
non-zero integer a has the prime factorization

a “ ˘pe11 p
e2
2 p

e3
3 ¨ ¨ ¨

and suppose that p is the k-th prime so that pn has prime factorization

pn “ p01 ¨ ¨ ¨ p
0
k´1p

n
kp

0
k`1 ¨ ¨ ¨

Then from the exercises in the previous section we find that the greatest common divisor has
prime factorization given by

gcdpa, pnq “ p01 ¨ ¨ ¨ p
0
k´1p

minpek,nq
k p0k`1 ¨ ¨ ¨ .

From this factorization we observe that gcdpa, pnq “ 1 if and only if minpek, nq “ 0, i.e., if
and only if ek “ 0, i.e., if and only if a is not divisible by p “ pk. In other words, we have

pZ{pnZqˆ “ traspn : 1 ď a ď pn and p - au.

To count the elements of this group, observe that the multiples of p between 1 and pn are

1, 2p, 3p, . . . , ppn´1qp “ pn,

and there are precisely pn´1 of these. Finally, we have

ϕppnq “ #pZ{pnZqˆ

“ #pintegers from 1 to pn not divisible by pq

“ #pintegers from 1 to pnq ´#pmultiples of pq

“ pn ´ pn´1.

9A slow proof is also possible.
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The second lemma depends on a significant trick, so it deserves a name. This result was called
the “Chinese Remainder Theorem” by Leonard Dickson in 1929. Apparently it became known
in the West after Wylie’s 1953 article Jottings on the Science of the Chinese Arithmetic. We
now know that the result was discovered by the mathematician Sun Zu in the 3rd century
AD. Some authors have tried to change the name to Sun Zu’s Theorem but it might be too
late.

Lemma 2 (The Chinese Remainder Theorem). For any coprime integers gcdpm,nq “ 1
there exists a one-to-one correspondence between elements of the ring Z{mnZ and pairs of
elements from Z{mZ and Z{nZ:

pZ{mnZq ÐÑ pZ{mZq ˆ pZ{nZq.

This correspondence restricts to the invertible elements

pZ{mnZqˆ ÐÑ pZ{mZqˆ ˆ pZ{nZqˆ,

and it follows from this that the totient function satisfies ϕpmnq “ ϕpmqϕpnq.

Proof. The map from pZ{mnZq to pairs pZ{mZq ˆ pZ{nZq is easy to define: for all integers
a P Z we send the equivalence class rasmn to the pair of equivalence classes prasm, rasnq. To
show that this is a one-to-one correspondence, there are three things to check:

(1) The map is “well-defined.” Assume that rasmn “ ra
1smn, so we have pa ´ a1q “ mnk

for some k P Z. In particular, since pa ´ a1q “ mpnkq we have rasm “ ra1sn, and since
pa´ a1q “ npmkq we have rasn “ ra

1sn. Thus the pairs prasm, rasnq and pra1sm, ra
1snq are equal

as desired. ///

(2) The map is “one-to-one.” Assume that the pairs prasm, rasnq and prbsm, rbsnq are equal.
In this case we want to show that rasmn “ rbsmn. By assumption we have rasm “ rbsm so that
m|pa ´ bq and we have rasn “ rbsn so that n|pa ´ bq. Then a result from HW3 tells us that
pmnq|pa´ bq and hence rasmn “ rbsmn as desired. ///

(3) The map is “onto.” This is the part where we need a trick. For any two integers a, b P Z
we need to show that the pair prasm, rbsnq has the form prcsm, rcsnq for some common integer
c P Z. And here’s the trick: Since gcdpm,nq “ 1 we know from the Euclidean Algorithm that
there exist some integers x, y P Z such that mx` ny “ 1. Then we define

c :“ any ` bmx.

To check that rcsm “ rasm we note that

rcsm “ rany ` bmxsm

“ ranysm ` rmpbxqsm

“ ranysm ` r0sm

“ ranysm
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“ rap1´mxqsm

“ rasm ´ rmpaxqsm

“ rasm ´ r0sm

“ rasm.

The proof that rcsn “ rbsn is similar. ///

To complete the proof we need to show that this one-to-one correspondence matches the inver-
ticle elements rasmn P pZ{mnZqˆ with pairs of invertible elements prasm, rasnq P pZ{mZqˆ ˆ
pZ{nZqˆ.10 In other words, we need to show that for all integers a P Z we have

gcdpa,mnq “ 1 ðñ gcdpa,mq “ 1^ gcdpa, nq “ 1.

For this we don’t even need the assumption gcdpm,nq “ 1. We will use the fact that two
integers p, q P Z are coprime if and only if there exist integers x, y P Z such that px`qy “ 1.
[Remind yourself why this is true.] First assume that gcdpa,mnq “ 1 so there exist integers
x, y P Z such that ax`mny “ 1. Then since ax`mpnyq “ 1 we have gcdpa,mq “ 1 and since
ax ` npmyq “ 1 we have gcdpa, nq “ 1. Conversely, assume that we have gcdpa,mq “ 1 and
gcdpa, nq “ 1, so there exist integers x, y, x1, y1 P Z such that ax`my “ 1 and ax1 ` ny1 “ 1.
Multiplying these two equations gives

pax`myqpax1 ` ny1q “ 1

apxax1 ` xny1 `myx1q `mnpyy1q “ 1,

and hence gcdpa,mnq “ 1 as desired. In conclusion, we have a one-to-one correspondence
between the sets pZ{mnZqˆ and pZ{mZqˆ ˆ pZ{nZqˆ. By comparing cardinalities we obtain

#pZ{mnZqˆ “ #
“

pZ{mZqˆ ˆ pZ{nZqˆ
‰

#pZ{mnZqˆ “ #pZ{mZqˆ ¨#pZ{nZqˆ

ϕpmnq “ ϕpmqϕpnq.

Proof of the Theorem. Suppose that a positive integer n ě 2 has prime factorization

n “ pe11 p
e2
2 ¨ ¨ ¨ p

ek
k

for some distinct primes 1 ă p1 ă p2 ă ¨ ¨ ¨ ă pk. One can easily check that the factors peii
and p

ej
j are coprime for all i ‰ j. Thus from the two previous lemmas we have

ϕpnq “ ϕppe11 p
e2
2 ¨ ¨ ¨ p

ek
k q

“ ϕppe11 qϕpp
ek
2 q ¨ ¨ ¨ϕpp

ek
k q Lemma 2

10We could give an abstract proof by showing that the correspondence preserves ring operations and then by
showing that the group of units of a “product ring” R ˆ S satisfies pR ˆ Sqˆ “ Rˆ ˆ Sˆ, but that would be
too abstract for this class.

66



“ pe11 ¨
p1 ´ 1

p1
¨ pe22 ¨

p2 ´ 1

p2
¨ ¨ ¨ pekk ¨

pk ´ 1

pk
Lemma 1

“ pe11 p
e2
2 ¨ ¨ ¨ p

ek
k ¨

p1 ´ 1

p1
¨
p2 ´ 1

p2
¨ ¨ ¨

pk ´ 1

pk

“ n ¨
k
ź

i“1

pi ´ 1

pi

“ n ¨
ź

p|n

p´ 1

p
.

To end the section I will give a probabilistic interpretation of this theorem. For example,
consider our favorite number 100 “ 22 ¨ 52 and consider any integer 1 ď a ď 100. We know
that gcdpa, 100q “ 1 if and only if a is not a multiple of 2 and a is not a multiple of 5. To
remove the multiples of 2 we can multiply by 1{2 to get

100 ¨
1

2
“ 50,

and to remove the multiples of 5 we can multiply by 4{5 to get

100 ¨
4

5
“ 80.

It seems plausible that we could remove both kinds of numbers by multiplying by both
fractions to get

100 ¨
1

2
¨

4

5
“ 40.

In other words, we are assuming that for integers 1 ď a ď 100 the two events

“a is not a multiple of 2” and “a is not a multiple of 5”

are probabilistically independent. The theorem above guarantees that this is correct.

Epilogue (Sun Zu Suan Jing). The original purpose of the Chinese Remainder Theorem
was to solve systems of simultaneous linear “congruences.” For example, here is a problem
from the fourth-century text Sun Zu Suan Jing (Master Sun’s Mathematical Manual):

There are certain things whose number is unknown. If we count them by threes,
we have two left over; by fives, we have three left over; and by sevens, two are left
over. How many things are there?

In modern terms we can phrase the problem as follows: Find all integers c P Z such that
$

&

%

rcs3 “ r2s3
rcs5 “ r3s5
rcs7 “ r2s7.
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We will solve this by dealing with the equations two at a time. Let’s begin with the first two
equations:

(SunZu)

"

rcs3 “ r2s3
rcs5 “ r3s5.

Now let’s recall what the Chinese Remainder Theorem says. If gcdpm,nq “ 1 then there
exists a unique element rcsmn P Z{mnZ with the property prcsm, rcsnq “ prasm, rbsnq, and this
element is given explicitly by

rcsmn “ rany ` bmxsmn,

where x, y P Z are any integers satisfying mx ` ny “ 1. In our case we have pa, bq “ p2, 3q,
pm,nq “ p3, 5q and I found px, yq “ p´3, 2q by trial-and-error. Thus the pair of equations
(SunZu) has a unique solution mod 3 ¨ 5 “ 15 which is given by

rcs15 “ rany ` bmxs15

“ r2 ¨ 5 ¨ 2` 3 ¨ 3 ¨ p´3qs15

“ r20´ 27s15

“ r´7s15

“ r8s15.

In other words, the pair of equations (SunZu) is equivalent to the single equation rcs15 “
r8s15 and the original system of three equations is equivalent to the following system of two
equations:

"

rcs15 “ r8s15
rcs7 “ r2s7.

We can solve this with the same method; this time we have pa, bq “ p8, 2q, pm,nq “ p15, 7q
and I found px, yq “ p1,´2q by trial-and-error. Finally, the Chinese Remainder Theorem tells
us that the original system has a unique solution mod 15 ¨ 7 “ 105, which is given by

rcs105 “ rany ` bmxs105

“ r8 ¨ 7 ¨ p´2q ` 2 ¨ 15 ¨ 1s105

“ r´112` 30s105

“ r´82s105

“ r23s105

In other words, the complete solution of the problem is c “ 23`105k for all integers k P Z. Sun
Zu used a similar method, but he solved all three equations at the same time. First he observed
that the integers px, y, zq “ p2, 1, 1q satisfy prx´1s3, ry

´1s5, rz
´1s7q “ pr5 ¨ 7s3, r3 ¨ 7s5, r3 ¨ 5s7q

and then he computed the solution

rcs105 “ r2px ¨ 5 ¨ 7q ` 3p3 ¨ y ¨ 7q ` 2p3 ¨ 5 ¨ zqs105

“ r2p70q ` 3p21q ` 2p15qs105

“ r233s105
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“ r23s105.

Apparently this solution was even recorded in a folk song called “The Song of Master Sun”:

Not in every third person is there one aged three score and ten,
On five plum trees only twenty-one boughs remain,
The seven learned men meet every fifteen days,
We get our answer by subtracting one hundred and five over and over again.11

Here is the general statement Sun Zu’s method in modern language. Suppose that we have a
sequence of moduli m1,m2, . . . ,mn P N with gcdpm1,m2, . . . ,mnq “ 1. Then for any integers
a1, a2, . . . , an P Z the system of congruences rcsmi “ raismi has a unique solution rcsM modulo
M :“ m1m2 ¨ ¨ ¨mn, which can be computed as follows. For each index 1 ď i ď n, use the
Euclidean Algorithm to find an integer xi P Z such that

rx´1i smi “ rm1 ¨ ¨ ¨mi´1mi`1 ¨ ¨ ¨mnsmi .

Equivalently, we can take any integers x1, . . . , xn P Z such that

n
ÿ

i“1

m1 ¨ ¨ ¨mi´1ximi`1 ¨ ¨ ¨mn “ 1.

Then the complete solution is given by

rcsM “ ra1px1m2 ¨ ¨ ¨mnq ` a2pm1x2m2 ¨ ¨ ¨mnq ` ¨ ¨ ¨ ` anpm1m2 ¨ ¨ ¨mn´1xnqsM .

The later work Shu Shu Jiu Zhang (1247) by the mathematician Qin Jiushao describes algo-
rithms (da yan shu) for solving linear systems that were unknown in Europe until over 500
years later. Eventually theses methods were rediscovered by Euler (1743) in his work on linear
differential equations and by Gauss (1801) in his work on least-squares regression.

4.6 Chinese Remainder Theorem and Smith Normal Form

Is there something interesting to say about this?

4.7 Applications to Cryptography

The dividing line between “arithmetic” and “higher arithmetic” (i.e., number theory) was
traditionally placed at the point where arithmetic ceases being useful. From recreational
problems such as Sylvester’s postage stamp problem, to significant challenges such as Fermat’s
Last Theorem, a common feature of all types of number theory was its lack of applications.12

This all changed in the 1960s and 70s, when researchers working in academia and behind the
scenes at US and British intelligence agencies came up with a new kind of cryptography, called

11Quoted from The Crest of the Peacock by George Ghereghese Joseph.
12The number theorist G.H. Hardy wrote an essay in 1940 called A Mathematician’s Apology in which he

celebrated the fact that his science was “gentle and clean” and could never be applied to military purposes.
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asymmetric cryptography.

To understand asymmetric cryptography we first have to discuss its precursor, symmetric
cryptography. Suppose that Alice and Bob13 want to send secret messages to each other.
This traditionally involved two steps:

Key Exchange. Alice and Bob meet in secret or establish a secure channel to exchange
the keys for a symmetric cryptosystem.

Message Exchange. Now Alice and Bob can exchange encrypted messages from over
an insecure channel.

The term “symmetric cryptosystem” means that Alice and Bob will both use the same process
for encryption and decryption; I will assume that relatively good schemes are available. The
real difficulty of symmetric cryptography is that is seems to require a secure channel in order
to exchange the keys. As the US Department of Defense developed the ARPANET in the
1960s, pressure mounted to find some way to perform this key exchange over an
insecure channel.

The desire to solve this problem forced people to consider the possibility of an asymmetric
cryptosystem. In brief, this is a scheme in which the encryption key is public and only the
decryption key needs to be private. (For this reason it is also called “public-key cryptography.”)
Thus, in order to send messages back and forth, Alice and Bob must set up two separate
systems. Here is what Alice’s system looks like:

Presumably we will encode both the plaintext and the ciphertext as numbers. Thus the tech-
nical problem is to find a mathematical “encryption function” m ÞÑ epmq with the following
properties:

• Given some plaintext message m it is easy to compute the ciphertext epmq.

13I am legally obligated to use these names.
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• The function e is one-to-one, so that a given ciphertext epmq corresponds to a unique
plaintext message m.

• Given the ciphertext epmq it is generally difficult to compute the plaintext message m
(i.e., to “decipher” the ciphertext), however there is a secret key that allows Alice to
compute it quickly.

Such a function m ÞÑ epmq is called a trapdoor function because of the secret door that allows
only Alice to compute the inverse epmq ÞÑ m quickly. However, it is not clear whether any
practical trapdoor functions exist. William Stanley Jevons tried to apply number theory to
the problem in his book The Principles of Science (1874):

Can the reader say what two numbers multiplied together will produce the number
8616460799? I think it unlikely that anyone but myself will ever know.

Here he is referring to the fact that it is relatively easy to multiply two numbers (in this
case the prime numbers 89681 and 96079) but that it is relatively difficult to factor them
apart again. Unfortunately Jevons was not able to incorporate a trapdoor into the prime
factorization problem.

The breakthrough came in the early 1970s when researchers working at GCHQ (the British
counterpart of the NSA) and at American universities independently came up with the same
solutions to the problem. The government discoveries were first, but since the work was
classified the algorithms were named after the public discoverers. For the rest of this section
I will discuss the two key protocols of asymmetric cryptography, called Diffie-Hellman Key
Exchange and the RSA Cryptosystem.

Protocol 1: Diffie-Hellman and ElGamal. Before we discussed Euler’s Totient Theorem
I wrote down the sequence of powers of 71 mod 1024:

1, 71, 945, 535, 97, 743, 529, 695, . . .

Since ϕp1024q “ ϕp29q “ 29p1 ´ 1{2q “ 512, Euler’s theorem tells us that the multiplicative
order ord1024p71q divides 512; in fact, my computer tells me that ord1024p71q “ 128. In other
words, the sequence of powers will repeat after 128 steps. However, other than this repetition
mod 128 there seems to be no discernable pattern in the sequence. I will phrase this as an
assumption:

Assumption: computing discrete logarithms is hard.

By a “discrete logarithm” I mean that we are given an element of pZ{1024Zqˆ of the form
r71`s1024 and we are asked to find the exponent `. This ` (which is well-defined modulo the
order ord1024p71q “ 128) is something like a “logarithm to the base 71” modulo 1024. More
generally, if gcdpa, nq “ 1 then we will assume that it is difficult to compute the exponent `
given an element of the form ra`sn P pZ{nZqˆ.

On the other hand, we have the following fact:

Fact: computing discrete exponentials is easy.
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That is, given integers a, ` and n it is easy to compute the element ra`sn P pZ{nZq; in fact we
can do it in less than 4 ¨ log2p`q operations by the method of “repeated squaring.” The trick
is to repeatedly use the formula

xn “

#

x ¨ px2qpn´1q{2 for n odd

px2qn{2 for n even

so that we only have to compute binary products and squares. To see how this works, let’s
compute the reduced form of the element r7143s1024. First we repeatedly apply the above
formula to obtain

r7143s1024 “ r71s1024 ¨
`

r712s1024
˘21

“ r71s1024 ¨ r94521s1024,

r94521s1024 “ r945s1024 ¨
`

r9452s1024
˘10

“ r945s1024 ¨ r9710s1024,

r9710s1024 “
`

r972s1024
˘5
“ r1935s1024,

r1935s1024 “ r193s1024 ¨
`

r1932s1024
˘2
“ r193s1024 ¨ r3852s1024,

r3852s1024 “ r769s1024.

Then we back-substitute to obtain

r7143s1024 “ r71s1024 ¨ r945s1024 ¨ r193s1024 ¨ r769s1024,

“ r71s1024 ¨ r945s1024 ¨ r961s1024,

“ r71s1024 ¨ r881s1024,

“ r87s1024.

In total we computed 5 squares and 3 binary products, and for each of these we performed
a single reduction mod 1024. If we regard each multiplication, squaring and reduction mod
1024 as a single operation, then we used a total of 16 operations, which is indeed less than
4 ¨ log2p43q « 4 ¨ p5.42q “ 21.7.

In contrast, suppose that someone tells you that r87s1024 is a power of r71s1024. No one has
yet found a method to compute the logarithm that is significantly faster than the brute force
method of computing each element the sequence r1s1024, r71s1024, r712s1024, . . . and waiting until
we hit r87s1024.

The idea of public-key cryptography was proposed by Whitfield Diffie and Martin Hellman in
1976. In this paper they proposed a method that allows two people (not yet called Alice and
Bob) to agree on a shared secret number over an insecure channel. This method is now called
the Diffie-Hellman Key Exchange. Here’s how it works:

• Alice and Bob agree publicly on a large prime number p and an invertible element
rgsp P pZ{pZqˆ such that the multiplicative order ordppgq is as large as possible.14

• Alice chooses a secret number a and Bob chooses a secret number b.
14We know from Euler’s Totient Theorem that ordppgq always divides ϕppq “ p´1. Moreover, one can prove

that there always exists an element g with ordppgq “ p´ 1; this is called the “primitive root theorem.”
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• Alice transmits rAsp “ rg
asp to Bob and Bob transmits rBsp “ rg

bsp to Alice.

• Alice computes rK1sp “ rBasp in standard form and Bob computes rK2sp “ rAbsp in
standard form.

But now observe that

rK1sp “ rB
asp “ rpg

bqasp “ rpg
aqbsp “ rA

bsp “ rK2sp.

Since the elements are in standard form, the uniqueness of remainders implies that K1 “ K2.
This number K :“ K1 “ K2 is the “secret key” that Alice and Bob can now use as the
foundation for a symmetric cryptosystem.

Let’s investigate why this system is secure. If Eve the eavesdropper is listening to all trans-
missions between Alice and Bob then she will know the numbers p, g, A “ ga and B “ gb

(reduced mod p). To break the system Eve needs to use these numbers to somehow compute
K “ gab. At present it seems that the only way to do this is to compute the discrete logs
of A and B to obtain the exponents a and b, and computing discrete logs is assumed to be
computationally expensive.

One weakness of the Diffie-Hellman Key Exchange is that neither of Alice or Bob gets to choose
the secret number K in advance, thus it cannot be used to directly transmit messages. Instead,
Alice and Bob can use the secret number K as a “key” to set up a symmetric cryptosystem.
In the same paper (1976) Diffie and Hellman proposed the idea of “public key cryptography”
and “trapdoor functions”, but they didn’t provide any explicit examples. The Diffie-Hellman
Key Exchange was upgraded to a full cryptosystem in 1985 by Taher ElGamal. Here is the
ElGamal Protocol, which allows everyone (including Bob) to send secret messages to Alice:

• Alice chooses a large prime p and and element rgsp P pZ{pZqˆ of order p´ 1, just as in
the Diffie-Hellman protocol.

• Alice chooses a secret number 0 ă a ă p and computes rAsp “ rg
asp in reduced form.

She publishes the numbers pp, g, Aq as her public key. She retains a as her private key.

• Bob converts his message to a number 0 ă m ă p.15 To encrypt the message he chooses
a secret number 0 ă b ă p and computes the numbers rBsp “ rg

bsp and rKsp “ rA
bsp in

reduced form. He sends the pair of numbers prBsp, rmKspq to Alice.

• To decrypt the message, Alice first computes the shared secret number rKsp “ rB
asp, just

as in the Diffie-Hellman protocol. Then she uses the Euclidean Algorithm to compute
the inverse rK´1sp and multiplies with the encrypted message rmKsp to obtain

rmKsp ¨ rK
´1sp “ rmsp ¨

`

rKsp ¨ rK
´1sp

˘

“ rmsp.

The ElGamal Protocol is slower than some other public-key cryptosystems (see the RSA
Cryptosystem below), however it has the advantage that it can be generalized to other mathe-
matical situations. That is, instead of choosing an element rgsp in the group of units pZ{pZqˆ

15If th message is long he can repeat the process several times.
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one can use any element of any group, as long as the group computations can be encoded
efficiently in a computer. One popular choice is the “group of rational points on an elliptic
curve”, which is unfortunately a bit too advanced for this course.

Protocol 2: The RSA Cryptosystem. The most popular public-key cryptosystem was
discovered in 1977 by Ron Rivest, Adi Shamir, and Leonard Adelman of MIT. It was also
discovered in 1973 by Clifford Cocks working for the UK intelligence agency GCHQ. However,
since Cocks’ work was classified until 1997, the system is known as RSA.

The security of the RSA Cryptosystem is based on the following assumption, which is the
same idea that was proposed by William Stanley Jevons in 1874:

Assumption: factoring integers is hard.

Specifically, if p and q are large prime numbers then it is much easier to multiply them to
obtain n “ pq than it is to factor n back into p and q. Now let me describe the RSA Protocol,
which allows everyone (including Bob) to send secret messages to Alice. It is mathematically
a bit more sophisticated than ElGamal but it turns out to be more efficient in practice.

• Alice chooses two large prime numbers p and q and computes their product n “ pq.
Then she chooses a random number e that is coprime to pp´1qpq´1q and she publishes
the numbers pn, eq as her public key.

• Next Alice uses the Euclidean Algorithm to compute the inverse of e mod pp´1qpq´1q,

rdspp´1qpq´1q “ re
´1spp´1qpq´1q,

and she keeps the secret number d as her private key. The individual primes p and q
must also be kept secret.

• Bob converts his message to a number 0 ď m ă n (or a sequence of numbers of this
form) and then he computes the number

rcsn “ rm
esn

in standard form. [Recall that modular exponentiation can be done in logarithmic time.]
He sends the “ciphertext” number c to Alice.

• To decode the message, Alice uses her private key d to compute the number

rm1sn “ rc
dsn

in standard form. I claim that the number m1 “ m and hence Alice has recovered Bob’s
secret message.

Proof that m1 “ m. Since e and d are inverses mod pp´ 1qpq´ 1q we know that there exists
some integer k P Z such that

de “ pp´ 1qpq ´ 1qk ` 1.
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Now we compute

rm1sn “ rc
dsn

“ rcdsn

“ prcsnq
d

“ prmesnq
d

“ rmdesn

“ rmpp´1qpq´1qk`1sn.

In the likely case that Bob’s message m is coprime to n “ pq then since ϕpnq “ pp´ 1qpq´ 1q,
Euler’s Totient Theorem tells us that

rmpp´1qpq´1qk`1sn “
´

rmpp´1qpq´1qsn

¯k
¨ rmsn

“

´

rmϕpnqsn

¯k
¨ rmsn

“ pr1snq
k
¨ rmsn

“ rmsn,

and hence rm1sn “ rmsn. Then since 0 ď m ă n and 0 ď m1 ă n, the uniqueness of remainders
implies that m1 “ m as desired.

In the unlikely case that Bob’s message m is not coprime to n “ pq,16 then the generalization
of Euler’s Totient Theorem proved on HW3.6 tells us that the equation

rmpp´1qpq´1qk`1sn “ rmsn

is true anyway. So the RSA Cryptosystem works even when Bob is unlucky.

Finally, let’s discuss why the RSA Cryptosystem is secure. If Eve the eavesdropper is listening
to all transmissions between Alice and Bob she knows the numbers n, e and c and she wants
to somehow combine these numbers to compute the secret message m. At present it seems
that the only way to do this is to first compute the secret number d and then compute rddsn,
just as Alice does, and since d is the inverse of e mod pp ´ 1qpq ´ 1q, Eve will be able to do
this if she can find the number pp´ 1qpq ´ 1q. Thus, here is the problem Eve needs to solve:

compute pp´ 1qpq ´ 1q given pq.

At present it seems that the only way to do this is to compute the prime factors p and q of
pq, which is assumed to be computationally expensive.

Remark: The security of the Diffie-Hellman/ElGamal and RSA systems is based on the as-
sumption that the problems of computing discrete logs and factoring integers are computation-
ally expensive. We do not yet have any mathematical theorems to justify these assumptions.17

16Bob doesn’t know the individual primes p and q so he has no way to guarantee that this does not happen.
17There do exist efficient “quantum algorithms” to solve both problems, so both systems will be broken when

(and if) quantum computers are developed. Quantum cryptography is a completely different subject.
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However, armies of well-paid mathematicians have been working on the problem now for a
few decades with little success; perhaps that’s just as good as a mathematical theorem.

5 Rational Points on Conics

Now you have seen everything there is to know about (systems of) linear Diophantine equa-
tions and linear congruences. For the remainder of this course we will try to develop a similarly
comprehensive understanding of quadratic equations. Unlike in the case of linear equations,
it turns out that there is a distinction between integer solutions and rational solutions. Fur-
thermore, it turns out that the problem of rational solutions is easier. In this chapter we will
investigate the rational solutions of quadratic equations and in the next we will tackle the
integer solutions.

5.1 Pythagorean Triples

In this introduction section I will introduce all of the important ideas as they apply to the
following specific equation:

(UC) x2 ` y2 “ 1.

If we temporarily allow x and y to be real numbers, then we can think of (UC) as the equation
of a circle of radius 1 centered at the origin of the x, y-plane:
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Note that the equation (UC) has exactly four integer solutions:

px, yq P tp1, 0q, p0, 1q, p´1, 0q, p0,´1qu.

There is nothing more to say about this, so we move on to rational solutions of (UC).18

Suppose that we have rational solution px, yq P Q2. By finding a common denominator we can
write x “ a{c and y “ b{c and by canceling the greatest common divisor we can assume that
gcdpa, b, cq “ 1 with c ě 1. Then equation (UC) becomes

pa{cq2 ` pb{cq2 “ 1

a2{c2 ` b2{c2 “ 1

a2 ` b2 “ c2.(PT)

Integer solutions to the equation (PT) are called Pythagorean triples and solutions with
gcdpa, b, cq “ 1 and c ě 1 are called primitive Pythagorean triples. You are probably fa-
miliar with the primitive Pythagorean triple 32 ` 42 “ 52 and the fact that for any integer
λ P Z we have p3λq2 ` p4λq2 “ p5λq2. The results of Section 4.1 immediately imply the
following general theorem.

Theorem (Reduction to Primitive Pythagorean Triples). Each Pythagorean triple
pa, b, cq P Z3 has a unique expression of the form

pa, b, cq “ λ ¨ pa1, b1, c1q

where λ P Z and where pa1, b1, c1q P Z3 is a primitive Pythagorean triple. {{{

Proof. Let pa, b, cq P Z3 be any integer triple satisfying a2`b2 “ c2 and let 1 ď λ “ gcdpa, b, cq
so that we have a “ λa1, b “ λb1 and c “ λc1 for some integers a1, b1, c1. Note that the vector
pa1, b1, c1q P Z3 is primitive since if ε ą 1 is any common divisor of a1, b1, c1 then λε ą λ is a
common divisor of a, b, c, which contradicts the fact that λ was the greatest common divisor.
Furthermore, since λ ‰ 0 (and also λ2 ‰ 0) we have

a2 ` b2 ´ c2 “ pλa1q2 ` pλb1q2 ´ pλc1q2

0 “ λ2pa12 ` b12 ´ c12q

0 “ a12 ` b12 ´ c12.

We have shown that the integer solution pa, b, cdq P Z3 can be expressed as

pa, b, cq “ λ ¨ pa1, b1, c1q

where 1 ď λ P Z and where pa1, b1, c1q P Z3 is a primitive integer solution.

18In general, elliptic Diophantine equations have only finitely many integer solutions. Integer solutions of
hyperbolic equations are more interesting. However, for rational solutions there is no difference.
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It only remains to show that this expression is unique. So suppose that we have another
positive integer 1 ď µ P Z and another primitive vector pa2, b2, c2q P Zn such that

pλa1, λb1, λc1q “ pa, b, cq “ pµa2, µb2, µc2q

Since gcdpa1, b1, c1q “ 1 it follows from the vector Bézout identity that there exist integers
x, y, z P Z such that 1 “ a1x` b1y ` c1z. Then multiplying both sides by λ gives

λ “ λpa1x` b1y ` c1zq

“ pλa1qx` pλb1qy ` pλc1qz

“ pµa2qx` pµb2qy ` pµc2qz

“ µpa2x` b2y ` c2zq.

It follows that µ|λ, and a similar argument shows that λ|µ. In other words, there exist integers
k, ` P Z such that λ “ kµ and µ “ `λ. Since λ ‰ 0 this implies that

λ “ kµ

λ “ k`λ

p1´ k`qλ “ 0

p1´ k`q “ 0

1 “ k`,

and hence we have either k “ ` “ 1 or k “ ` “ ´1. But since λ “ kµ and since λ and µ are
both positive we must have k “ ` “ 1 and hence λ “ µ. Finally, by cancelling the non-zero
factor λ in the equations

λa1 “ µa2 “ λa2

λb1 “ µb2 “ λb2

λc1 “ µc2 “ λc2,

we conclude that pa1, b1, c1q “ pa2, b2, c2q as desired.

Thus the problem of classifying Pythagorean triples is reduced to the problem of classify-
ing primitive Pythagorean triples. Furthermore, I claim that the classification of primitive
Pythagorean triples can be reduced to the classification of rational points on the unit circle.

Theorem (Primitive Triples vs Rational Points).

Claim: The map pa, b, cq ÞÑ pa{c, b{cq defines a bijection from primitive Pythagorean triples
with c ě 1 to rational points is injective and almost surjective.

Proof. Consider an arbitrary integer solution a2 ` b2 “ c2 with gcdpa, b, cq “ 1 and c ě 1.
Since c ‰ 0 (and cr ‰ 0) it follows that

a2 ` b2 ´ c2 “ c2rpa{cq2 ` pb{cq2 ´ 1s
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0 “ c2rpa{cq2 ` pb{cq2 ´ 1s

0 “ pa{cq2 ` pb{cq2 ´ 1,

and hence we have found a rational solution px, yq “ pa{c, b{cq of the equation x2 ` y2 “ 1. I
claim that the mapping Z3 Ñ Q2 defined by

pa, b, cq ÞÑ pa{c, b{cq

is the desired one-to-one correspondence. There are two things to show:

(1) The map is “onto.” Consider an arbitrary rational solution x2 ` y2 “ 1. By finding
a common denominator we can write px, yq “ pa{c, b{cq for some integers pa, b, cq P Z3 with
c ě 1. Then we have

a2 ` b2 ´ c2 “ c2rpa{cq2 ` pb{cq2 ´ 1s “ 0,

so that pa, b, cq P Z3 is an integer Pythagorean triple. It follows from the previous theorem
that there exists an expression pa, b, cq “ λpa1, b1, c1q with 1 ď λ P Z and gcdpa1, b1, c1q “ 1
such that a12 ` b12 “ c12, and since c “ λc1 with c ě 1 and λ ě 1 we must have c1 ě 1.
Finally, we observe that the primitive integer solution pa1, b1, c1q gets sent under our map to
pa1{c1, b1{c1q “ pa{c, b{cq “ px, yq as desired.

(2) The map is “one-to-one.” Suppose that we can write

pa{c, b{cq “ pa1{c1, b1{c1q

for some integers a, b, c, a1, b1, c1 P Z satisfying

• gcdpa, b, cq “ gcdpa1, b1, c1q “ 1,

• c ě 1 and c1 ě 1.

To show that pa, b, cq “ pa1, b1, c1q we will follow a similar strategy to the proof of uniqueness
in the previous theorem. Since gcdpa, b, cq “ 1 the vector Bézout identity says that there exist
integers x, y, z P Z such that

1 “ ax` by ` cz

c1 “ c1pax` by ` czq

c1 “ pc1aqx` pc1bqy ` pc1cqz

c1 “ pca1qx` pcb1qy ` pc1c1qz because a{c “ a1{c1 and b{c “ b1{c1

c1 “ cpa1x` b1y ` c1zq,

and we conclude that c|c1. A similar argument shows that c1|c then since c and c1 are both
positive we must have c “ c1. Finally, since c ‰ 0 and since ca1 “ c1a, cb1 “ c1b, we conclude
that a “ a1 and b “ b1 as desired.

Thus the classification of primitive Pythagorean triples is reduced the problem of classifying
rational points on the unit circle. It turns out that there is a beautiful geometric trick for find-
ing these points. The method was hinted at in the Arithmetica by Diophantus of Alexandria
(c. 200–284), althouth he didn’t describe it in geometric terms.
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The idea is to choose one specific rational point and to consider the line of slope t passing
through this point. In this case we’ll choose the point p´1, 0q:

For any finite value of t this will intersect the circle in exactly one other point, which we call
pxt, ytq. To compute the coordinates of this point, first note that the equation of the line is

t “ priseq{prunq

t “ py ´ 0q{px´ p´1qq

tpx` 1q “ y.

We substitute this into the equation of the circle to obtain

1 “ x2 ` y2

1 “ x2 ` t2px` 1q2

0 “ x2pt2 ` 1q ` xp2t2q ` pt2 ´ 1q.

Now we can use the quadratic formula to solve for x. Note that a very lucky cancellation
happens under the square-root sign:

x “
´2t2 ˘

a

p2t2q2 ´ 4pt2 ` 1qpt2 ´ 1q

2pt2 ` 1q

“
´2t2 ˘

a

4t4 ´ 4pt4 ´ 1qq

2pt2 ` 1q
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“
´2t2 ˘

a

4t4 ´ 4pt4 ´ 1qq

2pt2 ` 1q

“
´2t2 ˘

?
4

2pt2 ` 1q

“
´2t2 ˘ 2

2pt2 ` 1q

“
´t2 ˘ 1

t2 ` 1

“
´t2 ´ 1

t2 ` 1
or

´t2 ` 1

t2 ` 1

“ ´1 or
1´ t2

1` t2

The solution x “ ´1 corresponds to the point px, yq “ p´1, 0q and thus we have xt “ p1 ´
t2q{p1` t2q. Finally, we substitute this formula for xt into the equation of the line to obtain

yt “ tpxt ` 1q “ t

ˆ

1´ t2

1` t2
` 1

˙

“ t

ˆ

1´ t2

1´ t2
`

1´ t2

1` t2

˙

“
2t

1` t2
.

In summary, we have the following two equations relating the slope t to the coordinates of the
point pxt, ytq. These equations hold for any real number t:

t “
yt

xt ` 1
(1)

pxt, ytq “

ˆ

1´ t2

1` t2
,

2t

1` t2

˙

(2)

But recall that we are only interested in the rational points on the circle. Here is the key
fact.

Theorem (Diophantus’ Chord Method for the Circle). The mapping t ÞÑ pxt, ytq
defines a one-to-one correspondence between rational numbers t P Q and the rational points
on the unit circle, excluding p´1, 0q. {{{

Proof. Every real point on the unit circle except for p´1, 0q has the form pxt, ytq for some
unique real number t. Furthermore, from equation (1) above we see that

pxt, ytq P Q2 ùñ t P Q

and from equation (2) above we see that

t P Q ùñ pxt, ytq P Q2.

In other words, we have a one-to-one correspondence between rational values of t and rational
points on the circle except for p´1, 0q.
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It turns out that exactly the same trick works for any quadratic Diophantine equation as long
as we are able to find one specific rational point to begin with. Finding a rational point
on the unit circle was easy, but unfortunately this will not always be the case.

Next let’s investigate the rational points pxt, ytq in detail so we can extract a classification of
Pythagorean triples.

The general rational point on the unit circle has the form pxt, ytq P Q2 for some rational
number t P Q. Let us write t in lowest terms so that t “ u{v for some unique integers u, v P Z
with gcdpu, vq “ 1 and v ě 1. Then we have

pxt, ytq “

ˆ

1´ t2

1` t2
,

2t

1` t2

˙

“

ˆ

1´ pu{vq2

1` pu{vq2
,

2pu{vq

1` pu{vq2

˙

“

ˆ

v2

v2
¨

1´ pu{vq2

1` pu{vq2
,
v2

v2
¨

2pu{vq

1` pu{vq2

˙

“

ˆ

v2 ´ u2

v2 ` u2
,

2uv

v2 ` u2

˙

.

From the above remarks we also know that

(˚)

ˆ

a

c
,
b

c

˙

“ pxt, ytq “

ˆ

v2 ´ u2

v2 ` u2
,

2uv

v2 ` u2

˙

for some unique integers a, b, c P Z with gcdpa, b, cq “ 1 and c ě 1. To determine the re-
lationship between the unique integers a, b, c and the unique integers u, v it only remains to
determine the greatest common divisor of the integers v2 ´ u2, 2uv, v2 ` u2.

Lemma. Consider integers u, v P Z with gcdpu, vq “ 1. Then we have

gcdpv2 ´ u2, 2uv, v2 ` u2q “ 1 or 2.

{{{

Proof. Let d :“ gcdpv2´ u2, 2uv, v2` u2q. Now let p be any odd prime divisor of d. Since
p divides each of v2 ´ u2 and v2 ` u2 it must also divide

“

pv2 ´ u2q ` pv2 ` u2q
‰

“ 2v2.

Then since p - 2, Euclid’s Lemma tells us that p|v2 and hence p|v. Similarly we see that p
divides

“

pv2 ` u2q ´ pv2 ´ u2q
‰

“ 2u2

and it follows from Euclid’s Lemma that p|u. But this contradicts the fact that gcdpu, vq “ 1
so we conclude that d has no odd prime divisors and it follows that d is a power of 2. I claim
that d “ 2k for k “ 0 or k “ 1.
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To see this, assume for contradiction that d is divisible by 4 “ 22. Then by the same argument
as above we see that 4 divides each of 2v2 and 2u2. Since 4|2v2 there exists an integer ` P Z
such that 2v2 “ 4` “ 2p2`q and canceling ` gives v2 “ 2`. Then since 2 is prime, Euclid’s
Lemma tells us that 2|v. Then a similar argument gives 2|u, which again contradicts the fact
that gcdpu, vq “ 1. This completes the proof.

In the case gcdpv2 ´ u2, 2uv, v2 ` u2q “ 1 we conclude from equation (˚) that

pa, b, cq “ pv2 ´ u2, 2uv, v2 ` u2q.

In the case gcdpv2 ´ u2, 2uv, v2 ` u2q “ 2 we can divide through by 2 to obtain

gcd

ˆ

v2 ´ u2

2
, uv,

v2 ` u2

2

˙

“ 1,

and then it follows from equation (˚) that

pa, b, cq “

ˆ

v2 ´ u2

2
, uv,

v2 ` u2

2

˙

.

This completes the classification of Pythagorean triples, but I don’t like the look of the fractions
in the previous equation. Maybe we can get rid of them?

Observe that since a “ pv2 ´ u2q{2 is an integer, it must be the case that v2 and u2 have the
same parity, and it follows from this that u and v also have the same parity. Thus we can
define new integers u1, v1 P Z with the following change of variables:

"

u1 “ pu´ vq{2
v1 “ pu` vq{2

"

u “ v1 ´ u1

v “ v1 ` u1

From the system of equations on the right we see that the common divisors of u and v are the
same as the common divisors of u1 and v1 and hence gcdpu1, v1q “ gcdpu, vq “ 1. Finally, we
have the miraculous simplification

ˆ

v2 ´ u2

2
, uv,

v2 ` u2

2

˙

“ p2u1v1, pv1q2 ´ pu1q2, pv1q2 ` pu1q2q.

In summary, we have the following theorem.

Theorem (Classification of Pythagorean Triples). Consider a nonzero integer vector
p0, 0, 0q ‰ pa, b, cq P Z3 such that a2 ` b2 “ c2. Then exactly one of the following applies:

• There exist unique integers λ, u, v P Z with gcdpu, vq “ 1 and v ě 1 such that

pa, b, cq “ λ ¨
`

v2 ´ u2, 2uv, v2 ` u2
˘

.
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• There exist unique integers λ, u, v P Z with gcdpu, vq “ 1 and v ě 1 such that

pa, b, cq “ λ ¨
`

2uv, v2 ´ u2, v2 ` u2
˘

.

In either case we have gcdpv2 ´ u2, 2uv, u2 ` v2q “ 1. {{{

This theorem was by no means trivial to prove. The algebraic step of parametrizing the ra-
tional points in terms of t P Q was straightforward; however, the process of finding a unique
representation for the integer Pythagorean triples involved some tricky number-theoretic ar-
guments. And there are still some mysteries hiding in the final answer. For example, here is
a puzzle:

It follows from the previous theorm that if pa, b, cq is a Pythagorean triple then a
and b cannot both be odd. But this fact never showed up explicitly in the proof.
Why is it true?

Believe it or not, the easeist way to “explain” this phenomenon is by thinking about the
“square elements” in the ring Z{4Z !

Here is the relevant definition, which will play a central role later in this chapter.

Definition of Quadratic Residue. Consider integers a, n P Z with n ą 0. We say that a is
a quadratic residue mod n if there exists an integer x P Z such that

rasn “ rx
2sn “ prxsnq

2 .

Equivalently, the element rasn P Z{nZ has some square root rxsn in the ring Z{nZ.

{{{

The following exercise explains the puzzle.

Exercise.

(a) Show that r0s4 and r1s4 are the only square elements in the ring Z{4Z.

(b) Consider any integers a, b, c P Z such that a2 ` b2 “ c2. Reduce this equation mod 4 to
obtain

ra2s4 ` rb
2s4 “ rc

2s4.

Now apply part (a) to show that a and b cannot both be odd.

5.2 Reduction to Standard Form

We would like to generalize the methods of the previous section to find the complete rational
solution px, yq P Q2 to the general quadratic equation

(QDE) ax2 ` bxy ` cy2 ` dx` ey ` f “ 0.
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This problem is completely understood, even though it is not always feasible (or desirable) to
write down the solution in closed form. Here are the main steps involved in the solution:

• Reduce the general equation to a standard form (primitive, homogeneous, etc.)

• Determine whether a solution exists.

• Find one specific solution.

• Find the complete solution.

In this section we will show how the equation (QDE) can be transformed by an invertible
change of variables over Q into a certain standard form. To be specific, if the equation (QDE)
is not of the form 0 “ 0 or 0 “ 1 then there exist integers a, b, c P Z with gcdpa, b, cq “ 1 and
a ‰ 0 such that (QDE) is equivalent to one of the following:

ax` by ` c “ 0(linear)

ax2 ` by ` c “ 0(parabolic)

ax2 ` by2 ` c “ 0(elliptic/hyperbolic)

Then in the next section we will show how the problem of finding all rational solutions px, yq P
Q2 is equivalent to the problem of finding all integer solutions px, y, zq P Z3 with gcdpx, y, zq “
1 and z ě 1 to the associated homogenized equation:

ax` by ` cz “ 0(linear)

ax2 ` byz ` cz2 “ 0(parabolic)

ax2 ` by2 ` cz2 “ 0(elliptic/hyperbolic)

Furthermore, we will show how one rational solution automatically gives us the complete
rational solution. Finally, in the last section of this chapter will prove the famous Legendre
theorem, which gives a simple criterion for the existence of rational solutions and an algorithm
for finding one of them.

Remark: We postpone the discussion of integer points on conics until the final chapter of
this book, since that topic is more subtle and involves different methods.

So, let us proceed to the reduction of (QDE) into standard form. The first step is to express
the equation (QDE) in the language of matrix multiplication. Observe that we have

ax2 ` bxy ` cy2 ` dx` ey ` f “ 0

`

x y
˘

ˆ

a b{2
b{2 c

˙ˆ

x
y

˙

`
`

d e
˘

ˆ

x
y

˙

` f “ 0

xTAx` dTx` f “ 0,
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where the 2ˆ 1 column vectors d,x and the 2ˆ 2 matrix A are defined by

d “

ˆ

d
e

˙

, x “

ˆ

x
y

˙

, and A “

ˆ

a b{2
b{2 c

˙

.

There is some non-uniqueness in the choice of the matrix A. Indeed, it would be equally
correct to choose

A “

ˆ

a b
0 c

˙

or A “

ˆ

a 0
b c

˙

.

I made the choice I did because I want A to be a symmetric matrix, i.e., AT “ A.

Now that we have expressed the equation (QDE) in terms of matrices and vectors, it makes
sense to look for a change of variables x “ px, yq ÞÑ px1, y1q “ x1 that can also be expressed
in this language. In general we will consider so-called affine transformations, which have the
form

x “ Px1 ` u(AT)
ˆ

x
y

˙

“

ˆ

p q
r s

˙ˆ

x1

y1

˙

`

ˆ

u
v

˙

“

ˆ

px1 ` qy1 ` u
rx1 ` sy1 ` v

˙

.

Later we may require the numbers p, q, r, s, u, v to be integers or rational numbers but for now
they can be arbitrary. For the next step, recall that the matrix transpose satisfies pM`NqT “
MT ` NT and pMNqT “ NTMT whenever the matrix sum and product are defined. Then
substituting the change of variables x “ Px1`u into the equation (QDE) and using a moderate
amount of matrix arithmetic yields

xTAx` dTx` f “ 0

pPx1 ` uqTApPx1 ` uq ` dT pPx1 ` uq ` f “ 0

ppx1qTP T ` uT qApPx1 ` uq ` dT pPx1 ` uq ` f “ 0

px1qT pP TAP qx1 ` px1qTP TAu` uTAPx1 ` dTPx1 ` uTAu` dTu` f “ 0

px1qT pP TAP qx1 `
“

px1qTP TAu
‰T
` uTAPx1 ` dTPx1 ` uTAu` dTu` f “ 0 p!q

px1qT pP TAP qx1 ` uTATPx1 ` uTAPx1 ` dTPx1 ` uTAu` dTu` f “ 0

px1qT pP TAP qx1 ` uTAPx1 ` uTAPx1 ` dTPx1 ` uTAu` dTu` f “ 0 p!!q

px1qT pP TAP qx1 `
“`

2uTA` dT
˘

P
‰

x1 `
`

uTAu` dTu` f
˘

“ 0

px1qT pP TAP qx1 `
“

P T p2Au` dq
‰T

x1 `
`

uTAu` dTu` f
˘

“ 0 p!!q

px1qTA1x1 ` pd1qTx1 ` f 1 “ 0(QDE’)

where the 2ˆ 2 matrix A1, the 2ˆ 1 column vector d1 and the 1ˆ 1 number f 1 are defined by

A1 “ P TAP, d1 “ P T p2Au` dq, and f 1 “ uTAu` dTu` f.

Observe that in step (!) I used the fact that px1qTP TAu “
“

px1qTP TAu
‰T

, which is true
because px1qTP TAu is just a 1ˆ 1 matrix (i.e., a “number”) and every 1ˆ 1 matrix is equal
to its own transpose. The steps labeled (!!) are true because AT “ A.
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In summary, we began with the quadratic equation

(QDE) xTAx` dTx` f “ 0.

Then we made the affine transformation

(AT) x “ Px1 ` u

and substituted this into (QDE) to obtain the transformed equation

(QDE’) px1qTA1x1 ` pd1qTx1 ` f 1 “ 0

where
A1 “ P TAP, d1 “ P T p2Au` dq, and f 1 “ uTAu` dTu` f.

If the matrix P is invertible then the affine transformation (AT) is also invertible, with inverse
given by

(AT’) x1 “ P´1px´ uq,

and this case we observe that

x is a solution of (QDE) ðñ x1 is a solution of (QDE’).

The goal now is to choose an invertible matrix P and a vector u so that the equation (QDE’)
is as simple as possible. If we can find the complete solution of (QDE’) then we will obtain
the complete solution of the original (QDE) after applying the change of variables (AT).

So far all of this is pure algebra that holds over any commutative ring. However, if we are
looking for solutions in a specific ring (such as R, Q or Z) then we will need to place restrictions
on the matrix P and the vector u.

Observations:

• Real Case. Suppose that P and u have entries in R. If P is invertible then its inverse is
given by

P´1 “

ˆ

p q
r s

˙´1

“
1

ps´ qr

ˆ

s ´q
´r p

˙

,

which also has entries in R. In this case we see that

x P R2 ô x1 P R2,

so that the real solutions of (QDE) correspond to the real solutions of (QDE’). We will
examine this case below to get a feeling for the geometry of the problem.

• Rational Case. Suppose that P and u have entries in Q. If P is invertible then we see
from the formula above that P´1 also has entries in Q and we conclude that

x P Q2 ô x1 P Q2.

Thus the rational solutions of (QDE) correspond to the rational solutions of (QDE’).
The reduction in this case is only a bit trickier than the real case.
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• Integer Case. Suppose that P and u have entries in Z. Suppose furthermore that P
is invertible and that the inverse P´1 has entries in Z. (By the formula above this is
equivalent to having ps´ qr “ ˘1.) In this case we see that

x P Z2 ô x1 P Z2,

so the integer solutions of (QDE) correspond to the integer solutions of (QDE’). This
case is much trickier and we will postpone a full discussion until the next chapter.

{{{

General Strategy: With these observations in mind, here is the general strategy that we
will pursue. Consider a ring K P tR,Q,Zu. To find solutions x P K2 of the equation (QDE)
we perform the following steps:

• First we search for a matrix P such that P and P´1 both have entries in K and such
that the matrix A1 is “diagonal”:

A1 “ P TAP “

ˆ

a1 0
0 c1

˙

.

This has the effect of eliminating the xy-term from (QDE’):

a1px1q2 ` c1py1q2 ` pd1qTx1 ` f “ 0.

We will find that this is always possible when K P tR,Qu. In the case K “ R the
desired matrix P is just a rotation of the plane. In the case K “ Z it is not always
possible.

• Then we search for a vector u with entries in K such that

d1 “ P T p2Au` dq “ 0 “

ˆ

0
0

˙

.

This has the effect of eliminating the x-term and y-term from (QDE’):

(QDE”) a1px1q2 ` c1py1q2 ` f 1 “ 0.

We will find that this is almost always possible when K P tR,Qu. Algebraically we can
think of it as “completing the squares.” Geometrically it is a translation of the plane.

• Finally, we attempt to characterize the full solution x P K2 of the equation (QDE”).
If we can do this then we obtain the full solution of (QDE) by inverting the change of
variables.

{{{

The rest of the section is devoted to carrying out the first two steps of this strategy, first for
K “ R and then for K “ Q.

Reduction of (QDE) for real numbers. There is a general theorem of linear algebra that
says the following:
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Principal Axes Theorem. Let A be a real nˆ n matrix. If A is symmetric (i.e., if
AT “ A) then there exists a real nˆ n matrix P with the following properties

• P is invertible with inverse equal to its transpose (i.e., P´1 “ P T )

• P TAP is diagonal.

We will not use this theorem, but at least it tells us what kind of solution to look for. The
real 2ˆ 2 matrices P satisfying P´1 “ P T are just the reflections and rotations of the plane
that leave the origin fixed. In particular, for any angle θ the matrix

Rθ “

ˆ

cos θ ´ sin θ
sin θ cos θ

˙

has the effect of rotating every point around the origin, counterclockwise by θ. So let us
assume that P “ Rθ and see if we can find an angle θ such that P TAP is diagonal. I will
temporarily use the notation C :“ cos θ and S :“ sin θ to save space.19 Then we have

P TAP “

ˆ

C S
´S C

˙ˆ

a b{2
b{2 c

˙ˆ

C ´S
S C

˙

“

ˆ

aC2 ` bSC ` cS2 pc´ aqSC ` b
2pC

2 ´ S2q

pc´ aqSC ` b
2pC

2 ´ S2q aS2 ´ bSC ` cC2

˙

.

Observe that this matrix is diagonal if and only if

pc´ aqSC `
b

2
pC2 ´ S2q “ 0

pc´ aq sin θ cos θ `
b

2
pcos2 θ ´ sin2 θq “ 0

c´ a

2
sinp2θq `

b

2
cosp2θq “ 0

pa´ cq sinp2θq “ b cosp2θq.

If b “ 0 then θ “ 0 is a solution. Indeed, in this case the matrix A is already diagonal so we
only need to “rotate by zero.” If pa ´ cq “ 0 then θ “ π{4 is a solution since in this case we
have

pa´ cq sinpπ{2q “ 0 “ b cospπ{2q.

Finally, if we have b ‰ 0 and pa ´ cq ‰ 0 then we must have either sinp2θq “ cosp2θq “ 0
(which is impossible) or we must have sinp2θq ‰ 0 and cosp2θq ‰ 0. In this last case we can
solve the equation to obtain

sinp2θq

cosp2θq
“

b

a´ c

tanp2θq “
b

a´ c
.

19Trigonometry is beautiful except for the notation.
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And since the tan function takes on all real values, we can always find a solution θ. In
summary, there exists an invertible real matrix P with the property

P TAP “

ˆ

a1 0
0 c1

˙

,

and thus the transformed equation (QDE’) takes the form

a1px1q2 ` c1py1q2 ` dTx1 ` f 1 “ 0,

where
d1 “ P T p2Au` dq and f 1 “ uTAu` f.

Our next goal is to choose the vector u “
`

u v
˘T

so that d1 “ 0T “
`

0 0
˘T

. Since the
matrix P (and hence also P T ) is invertible, we observe that this will happen if and only if

(˚) 2Au` d “ 0.

The question is whether this equation (˚) has a solution. The rest of the discussion depends
on a specific integer ∆ P Z, which is called the discriminant of the equation (QDE):

∆ :“ b2 ´ 4ac.

We observe that the determinant of the matrix A is

det

ˆ

a b{2
b{2 c

˙

“ ac´

ˆ

b

2

˙2

“ ac´
b2

4
“

4ac´ b2

4
“ ´

∆

4
,

and hence the matrix A is invertible if and only if ∆ ‰ 0. Furthermore, recall that we have
detpMT q “ detpMq and detpMNq “ detpMq detpNq for all matrices M and N for which these
expressions make sense. Now observe that

a1c1 “ det

ˆ

a1 0
0 c1

˙

“ detpP TAP q

“ detpP T q detpAq detpP q

“ detpP qdetpAqdetpP q

“ detpAqdetpP q2

“ ´
∆

4
detpP q2.

Since detpP q ‰ 0 (because P is invertible) we must have detpP q2 ą 0 and this implies that
a1c1 is negative/positive/zero precisely when ∆ is positive/negative/zero.20 There are three
cases:

20In the current situation we have detpP q “ 1, but this will not be the case below so I wanted to keep the
discussion as general as possible.
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‚ If ∆ “ b2 ´ 4ac “ 0 then we also have a1c1 “ 0, so at least one of a1 and c1 is zero. If they
are both zero then we get A1 “ 0 and hence A “ 0, so that (QDE) and (QDE’) are each the
equation of a line. Otherwise, by switching x and y if necessary, we can assume that a1 ‰ 0
and c1 “ 0. Then the equation (QDE’) takes the form

a1px1q2 ` d1x1 ` e1y1 ` f 1 “ 0

and by “completing the square” in x1 we obtain

px1q2 `
d1

a1
x1 `

e1

a1
y1 `

f 1

a1
“ 0

ˆ

x1 `
d1

2a1

˙2

`
e1

a1
y1 `

f 1

a1
´

ˆ

d1

2a1

˙2

“ 0

px2q2 ` e2y1 ` f2 “ 0.

If e2 “ 0 then this is the equation of a line (when f2 “ 0), two parallel lines (when f2 ă 0)
or has no real solution (when f2 ą 0). If e2 ‰ 0 then we identify this as the equation of a
parabola.

‚ If ∆ “ b2 ´ 4ac ă 0 then we also have a1c1 ą 0 so that a1 and c1 have the same parity. Since
∆ ‰ 0, the matrix A is invertible and we can solve the equation (˚) for u to obtain

2Au` d “ 0

u “ ´
1

2
A´1d.

This forces d1 “ 0 and so equation (QDE’) takes the form

(QDE”) a1px1q2 ` c1py1q2 ` f 1 “ 0.

If f 1 has the same parity as a1 and c1 then there is no real solution. If f 1 “ 0 then the
solution is the single point px1, y1q “ p0, 0q and if f 1 has opposite parity from a1 and c1 then
we identify (QDE”) as the equation of an ellipse.

‚ If ∆ “ b2 ´ 4ac ą 0 then we also have a1c1 ă 0 so that a1 and c1 have opposite parity. Since
∆ ‰ 0 we can again force d1 “ 0 by choosing u “ ´A´1d{2 so equation (QDE’) takes the
form

(QDE”) a1px1q2 ` c1py1q2 ` f 1 “ 0.

If f 1 “ 0 then we can solve this to obtain y1{x1 “ ˘
a

´a1{c1, which is the equation of two
lines meeting at the point px1, y1q “ p0, 0q. If f 1 ‰ 0 then we identify (QDE”) as the
equation of a hyperbola.

In summary, we can choose a rotation matrix P and a translation vector u so that (QDE’) is
the equation of a conic section in standard position in the x1, y1-plane. This tells us that the
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original (QDE) is the equation of a conic section in non-standard position in the x, y-plane.
See below for an explanation of the words “conic section.”

{{{

Reduction of (QDE) for rational numbers. The general outline here is the same as the
computation over the real numbers, however we will not be able to choose the matrix P so
that P´1 “ P T . Indeed, the rotation matrix Rθ almost never has rational entries.

To find a suitable matrix P we will use a different method called Hermite reduction. You
may remember that we can perform an invertible “row operation” on a 2 ˆ 2 matrix A by
multiplying on the left by one of the elementary matrices

E “

ˆ

1 `
0 1

˙

,

ˆ

1 0
` 1

˙

or

ˆ

0 1
1 0

˙

.

The goal of Gaussian row-reduction is to multiply on the left by a sequence of elementary
matrices until we reach a diagonal matrix, or at least an upper-triangular matrix. This is
often expressed as an algorithm to compute the inverse of a matrix. First we place A next
to an identity matrix:

`

A I
˘

.

Then we perform a sequence of row operations E1, E2, . . . , Ek on the whole matrix to obtain
`

A I
˘

`

E1A E1

˘

`

E2E1A E2E1

˘

...
`

Ek ¨ ¨ ¨E2E1A Ek ¨ ¨ ¨E2E1

˘

`

PA P
˘

where P “ Ek ¨ ¨ ¨E2E1 is the product of the elementary matrices. If it is possible to reduce
A to the identity matrix in this way then we will eventually reach PA “ I and the inverse
matrix P “ A´1 will appear on the right hand side:

`

PA P
˘

“
`

I A´1
˘

.

There is also a variant of this method called column-reduction which performs invertible column
operations by multiplying on the right by elementary matrices:

ˆ

A

I

˙

Ñ

ˆ

AE1

E1

˙

Ñ ¨ ¨ ¨ Ñ

ˆ

AE1E2 ¨ ¨ ¨Ek
E1E2 ¨ ¨ ¨Ek

˙

“

ˆ

AP

P

˙

.

The idea of Hermite reduction is to perform both of these processes simultaneously. To
begin we start with a matrix of the form

ˆ

A I

I

˙

.
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It doesn’t matter what we put in the bottom right because we are never going to touch it. If
we perform a column operation on the first n columns (suppose A is an n ˆ n matrix) then
this has the effect of multiplying on the right by an elementary matrix

ˆ

A I

I

˙

Ñ

ˆ

AE I

E

˙

.

Note that the upper-right corner is left untouched by this process. Now we perform “the
same” row operation on the on the first n rows. This has the effect of multiplying on the left
by the transposed elementary matrix:

ˆ

A I

I

˙

Ñ

ˆ

AE I

E

˙

Ñ

ˆ

ETAE ET

E

˙

.

It doesn’t matter in which order we perform the two operations because of the associative
property of matrix multiplication: pETAqE “ ET pAEq. After performing a sequence of
simultaneous row/column operations then we obtain

ˆ

A I

I

˙

Ñ

ˆ

ET1 AE1 ET1
E1

˙

Ñ ¨ ¨ ¨ Ñ

ˆ

ETk ¨ ¨ ¨E
T
1 AE1 ¨ ¨ ¨Ek ETk ¨ ¨ ¨E

T
1

E1 ¨ ¨ ¨Ek

˙

.

The end result is a matrix of the form
ˆ

A I

I

˙

Ñ

ˆ

P TAP P T

P

˙

where P “ E1E2 ¨ ¨ ¨Ek is the product of the elementary matrices. The goal now is to choose
the simultaneous row/column operations so that we can reduce A to a diagonal matrix.

It turns out that if AT “ A has rational entries then this is always possible.21 Let’s see how
the Hermite reduction algorithm works on our favorite 2ˆ 2 matrix

A “

ˆ

a b{2
b{2 c

˙

.

First let’s assume that a ‰ 0. Then we can subtract b{2a times the first row from the second
row and subtract b{2a times the first column from the second column to obtain

¨

˚

˚

˝

a b{2
b{2 c

1 0
0 1

1 0
0 1

˛

‹

‹

‚

Ñ

¨

˚

˚

˝

a b{2
0 c´ b2{4a

1 0
´b{2a 1

1 0
0 1

˛

‹

‹

‚

Ñ

¨

˚

˚

˝

a 0
0 c´ b2{4a

1 0
´b{2a 1

1 ´b{2a
0 1

˛

‹

‹

‚

.

21More generally, it is always possible for a symmetric matrix with entries in a given field. It is not always
possible over the integers.
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From the remarks above, it follows that by choosing

P “

ˆ

1 ´b{2a
0 1

˙

we obtain the diagonalization

P TAP “

ˆ

1 0
´b{2a 1

˙ˆ

a b{2
b{2 c

˙ˆ

1 ´b{2a
0 1

˙

“

ˆ

a 0
0 c´ b2{4a

˙

.

Note that the matrix P is certainly not a rotation matrix, but it is still invertible with

P´1 “

ˆ

1 `b{2a
0 1

˙

.

The main feature of the matrix P is that it has rational entries so that it preserves the
rationality of solutions of the Diophantine equation.

The case c ‰ 0 is similar. Here we subtract b{2c times the second row/column from the first
row/column to obtain

¨

˚

˚

˝

a b{2
b{2 c

1 0
0 1

1 0
0 1

˛

‹

‹

‚

Ñ

¨

˚

˚

˝

a´ b2{4c 0
b{2 c

1 ´b{2c
0 1

1 0
0 1

˛

‹

‹

‚

Ñ

¨

˚

˚

˝

a´ b2{4c 0
0 c

1 ´b{2c
0 1

1 0
´b{2c 1

˛

‹

‹

‚

.

Thus by choosing

P “

ˆ

1 0
´b{2c 1

˙

we obtain the rational diagonalization

P TAP “

ˆ

1 0
´b{2c 1

˙ˆ

a b{2
b{2 c

˙ˆ

1 ´b{2c
0 1

˙

“

ˆ

a´ b2{4c 0
0 c

˙

.

If a “ b “ c “ 0 then there is nothing to do, thus the last case we must consider is when
a “ c “ 0 and b ‰ 0. This one is a bit harder. First we have to add the second row/column
to the first row/column to get a nonzero entry on the diagonal. Then we subtract 1{2 of the
first row/column from the second row/column to eliminate the off-diagonal entries. At this
point the matrix is diagonalized, but we can clean it up a bit more by multiplying the second
row/column by 2:

¨

˚

˚

˝

0 b{2
b{2 0

1 0
0 1

1 0
0 1

˛

‹

‹

‚

Ñ

¨

˚

˚

˝

b b{2
b{2 0

1 1
0 1

1 0
1 1

˛

‹

‹

‚
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Ñ

¨

˚

˚

˝

b 0
0 ´b{4

1 1
´1{2 1{2

1 ´1{2
1 1{2

˛

‹

‹

‚

Ñ

¨

˚

˚

˝

b 0
0 ´b

1 1
´1 1

1 ´1
1 1

˛

‹

‹

‚

.

In summary, by choosing

P “

ˆ

1 ´1
1 1

˙

we obtain the diagonalization

P TAP “

ˆ

1 1
´1 1

˙ˆ

0 b{2
b{2 0

˙ˆ

1 ´1
1 1

˙

“

ˆ

b 0
0 ´b

˙

.

Maybe we could have come up with all of these tricks through cleverness, but I prefer the
systematic way.

The rest of the reduction is identical to the real case, since all of the translation vectors u
we chose in that case had entries that were rational expressions of the previous entries. In
summary, by an invertible rational affine transformation (whose details are spelled out above)
we can reduce (QDE) to one of the following three forms:

• If A “ 0 then the original equation (QDE) had the form

a1x` b1y ` c1 “ 0

for some integers a1, b1, c1 P Z. We already solved this problem in Chapter 2.

• If ∆ “ b2 ´ 4ac “ 0 and A ‰ 0 then the equation (QDE) can be reduced to the form

a1x2 ` b1y ` c1 “ 0 or a1y2 ` b1x` c1 “ 0

for some integers a1, b1, c1 P Z with a1 ‰ 0. If the coefficient b1 satisfies b1 ď 0 then both
cases become a single line or two parallel lines, which we solved in Chapter 2. Therefore
we will assume that b1 ą 0, in which case each equation represents a parabola.

• If ∆ “ b2 ´ 4ac ‰ 0 then the equation (QDE) can be reduced to the form

a1x2 ` b1y2 ` c1 “ 0

for some integers a1, b1, c1 P Z with a1b1 ‰ 0. If c1 “ 0 then this equation represents either
a single point or two intersecting lines, which we solved in Chapter 2. Therefore we will
assume that c1 ‰ 0. Finally, if a1c1 ą 0 then the equation represents an ellipse and if
a1c1 ă 0 then the equation represents a hyperbola.

The End
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5.3 One Solution Gives Every Solution

5.4 When Does a Solution Exist?

In the previous section we showed that if we can find one specific rational solution to a
parabolic or hyperbolic/elliptic Diophantine equation then we can find the complete rational
solution by using Diophantus’ chord method. Thus the problem of finding the complete
rational solution of a quadratic Diophantine equations has been reduced to the question of

existence of solutions.

The following example shows that rational solutions do not necessarily exist.

Example: There are no rational points on the circle x2 ` y2 “ 3.

Remark: We could prove this by reducing the equation a2 ` b2 “ 3c2 mod 4 as we did at the
end of section 4.1. However, that was a bit of a lucky trick. Now I want to follow a method
of proof that will extend to the general hyperbolic/elliptic case.

Proof. Assume for contradiction that there exist rational numbers px, yq P Q2 such that
x2 ` y2 “ 3. By finding a common denominator we can write px, yq “ pa{c, b{cq for some
integers a, b, c P Z with c ě 1 and by canceling common factors as in Section 4.1 we can
assume that gcdpa, b, cq “ 1. We obtain the equation

x2 ` y2 “ 3

pa{cq2 ` pb{cq2 “ 3

a2 ` b2 “ 3c2.

Now I claim that 3 is not a common divisor of a and b. Indeed, if we had a “ 3a1 and b “ 3b1

for some integers a1, b1 P Z then we would obtain

a2 ` b2 “ 3c2

p3a1q2 ` p3b1q2 “ 3c2

32
“

pa1q2 ` pb1q2
‰

“ 3c2

3
“

pa1q2 ` pb1q2
‰

“ c2.

Now since 3|c2, Euclid’s Lemma tells us that 3|c and we conclude that 3 is a common factor
of a, b, c. This contradicts the fact that gcdpa, b, cq “ 1.

Finally, let us reduce the equation a2 ` b2 “ 3c2 mod 3 to obtain

ra2 ` b2s3 “ r3c
2s3
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ra2s3 ` rb
2s3 “ r0s3.

Since 3 is not a common multiple of a and b we can assume without loss of generality that
3 - a so that the elements ras3 and ra2s3 are invertible, and we obtain

ra2s3 ` rb
2s3 “ r0s3

ra2s3 “ r´b
2s3

ra2s3 ¨ ra
´2s3 “ r´1s3 ¨ rb

2s3 ¨ ra
´2s3

r1s3 “ r2s3 ¨ rb
2s3 ¨ ra

´2s3

r2s3 ¨ r1s3 “ r2s3 ¨ r2s3 ¨ rb
2s3 ¨ ra

´2s3

r2s3 “
`

r2s3 ¨ rbs3 ¨ ra
´1s3

˘2
.

This last equation says that the element r2s3 P Z{3Z is a perfect square. But we can see that
this is a contradiction by squaring all three elements of Z{3Z:

r02s3 “ r0s3 ‰ r2s3, r12s3 “ r1s3 ‰ r2s3 and r22s3 “ r1s3 ‰ r2s3.

In summary, we find that the equation x2`y2 “ 3 has no rational solution because the element
r2s3 has no square root in the ring Z{3Z. In this section we will prove a celebrated theorem
of Legendre (1785) which says that the existence of rational solutions to a general quadratic
Diophantine equation is controlled by the existence of certain modular square roots.

Legendre’s Theorem. Fix integers pa, b, cq P Z3 such that:

• a, b, c are squarefree (i.e., have no repeated prime factors),

• a, b, c are pairwise coprime (i.e., gcdpa, bq “ gcdpa, cq “ gcdpb, cq “ 1),

• abc ‰ 0, not all of the same sign.

Then the equation
ax2 ` by2 ` cz2 “ 0

has a solution p0, 0, 0q ‰ px, y, zq P Z3 if and only if the following elements have square roots:

r´absc P Z{cZ, r´acsb P Z{bZ and r´bcsa P Z{aZ.

Moreover, in this case we will show that there exists a solution satisfying

0 ă |a|x2 ` |b|y2 ` |c|z2 ă 8|abc|.

{{{
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[Remark: The bound ă 8|abc| is not the best possible22 but we include it because it follows
from our proof of existence with no extra work. The bound shows that we can find a solution
(or prove that none exists) by a finite computation.]

Before proving the theorem let us oberve why it completely solves the problem of the existence
of rational points on conic sections. There are two cases to consider:

Existence of Rational Points on a Parabola: Given integers pa, b, cq P Z3 with gcdpa, b, cq “
1 and a ‰ 0, we want to determine if there exist rational numbers px, yq P Q2 such that

ax2 ` by ` c “ 0.

If b ‰ 0 then we note that px, yq “ p0,´c{bq is a solution, so let us assume that b “ 0. Then
the equation becomes

ax2 ` c “ 0

x2 “ ´c{a.

In other words, we need to determine whether the rational number ´c{a has a rational square
root. If we write d “ gcdpa, cq with a “ da1 and b “ dc1 then we observe that ´c{a “ ´c1{a1

has a rational square root if and only if

• a1 and c1 have opposite signs,

• |a1| and |c1| are perfect squares.

Existence of Rational Points on a Hyperbola or Ellipse: Given integers pa, b, cq P Z3

we want to determine if there exist rational numbers px, yq P Q2 such that

ax2 ` by2 ` c “ 0.

If a “ 0 or b “ 0 then this was already solved in the parabolic case above so we will assume
that ab ‰ 0. If c “ 0 then the equation becomes px{yq2 “ ´b{a, which was also solved above,
so we can assume that abc ‰ 0. If a, b, c all have the same sign (say positive) then for any
px, yq P Q2 we obtain ax2 ` by2 ě 0 ą ´c, so the equation has no solution. Furthermore,
by dividing the equation by the greatest common denominator of a, b, c we can assume that
gcdpa, b, cq “ 1.

We have reduced the problem of existence to the case when gcdpa, b, cq “ 1 and abc ‰ 0, not
all of the same sign. By finding a common denominator we also see that the existence of a
rational solution px, yq P Q2 is equivalent to the existence of integers px, y, zq P Z3 with z ‰ 0
such that

ax2 ` by2 ` cz2 “ 0,

22The best possible bound is ď 2|abc|. See the paper Small Solutions of the Legendre Equation (1998) by
Cochrane and Mitchell.
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and since this equation is symmetric in a, b, c we might as well look for nontrivial integer
solutions p0, 0, 0q ‰ px, y, zq P Z3.

Next we will reduce to the “squarefree” case, but first we need a definition.

Definition/Theorem. Consider an integer 0 ‰ a P Z with unique prime factorization

a “ ˘pe11 p
e2
2 p

e3
3 ¨ ¨ ¨ .

By reducing each exponent ei mod 2 we obtain unique quotients and remainders ei “ 2qi ` ri
with ri P t0, 1u. Then we can write a “ ˘āα2 where

ā :“ pr11 p
r2
2 p

r3
3 ¨ ¨ ¨

α :“ pq11 p
q2
2 p

q3
3 ¨ ¨ ¨ .

The unique integers ā and α2 are called the squarefree part and the square part of a, respec-
tively. We say that 0 ‰ a P Z is squarefree if and only if α “ 1. {{{

So consider integers pa, b, cq P Z3 with gcdpa, b, cq “ 1 and abc ‰ 0, not all of the same sign,
and consider the unique square/squarefree decompositions: a “ āα2, b “ b̄β2, c “ c̄γ2. Note
that we have gcdpā, b̄, c̄q “ 1 because any common divisor of ā, b̄, c̄ is also a common divisor
of a, b, c. Now consider the following equations:

ax2 ` by2 ` cz2 “ 0(1)

āx2 ` b̄y2 ` c̄z2 “ 0.(2)

I claim that (1) has a nontrivial integer solution if and only if (2) does. To see this let
p0, 0, 0q ‰ px, y, zq P Z3 be a solution to (1). Then we have

ax2 ` by2 ` cz2 “ 0

pāα2qx2 ` pb̄β2qy2 ` pc̄γ2qz2 “ 0

āpαxq2 ` b̄pβyq2 ` c̄pγzq2 “ 0

and it follows that the equation (2) has a solution p0, 0, 0q ‰ pαx, βy, γzq P Z3. Conversely, if
(2) has a solution p0, 0, 0q ‰ px, y, zq P Z3 then we have

āx2 ` b̄y2 ` c̄z2 “ 0

a

α2
x2 `

b

β2
y2 `

c

γ2
z2 “ 0

ax2β2γ2 ` by2α2γ2 ` cz2α2β2 “ 0

apxβγq2 ` bpyαγq2 ` cpzαβq2 “ 0

and it follows that equation (1) has a solution p0, 0, 0q ‰ pxβγ, yαγ, zαβq P Z3.
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Thus we have reduced our problem to the following. Given squarefree integers pa, b, cq P Z3

such that gcdpa, b, cq “ 1 and abc ‰ 0, not all of the same sign, determine whether there exist
integers p0, 0, 0q ‰ px, y, zq P Z3 such that

ax2 ` by2 ` cz2 “ 0.

To complete the reduction, I claim that we can also assume that gcdpa, bq “ gcdpa, cq “
gcdpb, cq “ 1. To see this, suppose that a, b, c are not pairwise-coprime. By the symmetry
of a, b, c we can assume without loss of generality that d :“ gcdpa, bq ą 1. Now let a “ da1

and b “ db1 and consider the following two equations:

ax2 ` by2 ` cz2 “ 0,(1)

a1x2 ` b1y2 ` cdz2 “ 0.(2)

I claim that (1) has a nontrivial integer solution if and only if (2) does. Indeed, suppose that
(1) has a solution p0, 0, 0q ‰ px, y, zq P Z3 so that ax2 ` by2 “ ´cz2. Since d is a common
divisor of a and b this implies that d divides cz2. But we also know that

1 “ gcdpa, b, cq “ gcdpgcdpa, bq, cq “ gcdpd, cq,

so Euclid’s Lemma tells us that d|z2. Finally, since a and b are squarefree, d is also squarefree
so that d|z2 implies d|z, say z “ dz1. It follows that

ax2 ` by2 ` cz2 “ 0

pda1qx2 ` pdb1qy2 ` cpdz1q2 “

dpa1x2 ` b1y2 ` cdpz1q2q “ 0

a1x2 ` b1y2 ` cdpz1q2 “ 0

and hence (2) has a nontrivial solution p0, 0, 0q ‰ px, y, z1q P Z3. Conversely, suppose that (2)
has a solution p0, 0, 0q ‰ px, y, zq P Z3. Then it follows that

a1x2 ` b1y2 ` cdz2 “ 0

dpa1x2 ` b1y2 ` cdz2q “ 0

pda1qx2 ` pdb1qy2 ` cd2z2 “ 0

ax2 ` by2 ` cpdzq2 “ 0

and hence (1) has a nontrivial solution p0, 0, 0q ‰ px, y, dzq P Z3.

We have shown that equations (1) and (2) are equivalent. Now observe the following:

• Since gcdpd, cq “ 1 the integers pa1, b1, cdq P Z3 are squarefree.

• Since gcdpa1, b1q “ 1 we have gcdpa1, b1, cdq “ 1.

• Since 1 ă d we have

0 ă |a1b1pcdq| ă d ¨ |a1b1pcdq| “ |pa1dqpb1dqc| “ |abc|.
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If the coefficients of (2) are still not pairwise-coprime then the first two observations above tell
us that we can repeat the argument, and the third observation tells us that the process will
eventually stop. In the end we will arrive at an equation that is equivalent to (1) in which the
coefficients are pairwise-coprime. As an example of this reduction procedure consider three
distinct (positive or negative) primes p, q, r. Then the solvability of the following equations
are equivalent:

pqx2 ` pry2 ` qrz2 “ 0

qx2 ` ry2 ` pqrz2 “ 0

x2 ` qry2 ` prz2 “ 0

rx2 ` qy2 ` pz2 “ 0.

In summary, we have reduced the problem of the existence of rational points on a conic section
to the case of Legendre’s Theorem. {{{

Proof of Legendre’s Theorem. So consider any squarefree integers pa, b, cq P Z3 with
gcdpa, bq “ gcdpa, cq “ gcdpb, cq “ 1 and abc ‰ 0, not all of the same sign. We want to show
that the equation

ax2 ` by2 ` cz2 “ 0

has a nontrivial solution p0, 0, 0q ‰ px, y, zq P Z3 if and only if the elements r´absc, r´acsb and
r´bcsa have square roots.

First the easy direction. Assume that a nontrivial solution exists. We will show that r´absc
has a square root and then the other cases will follow from symmetry. Since the equation

ax2 ` by2 ` cz2 “ 0

is homogeneous in x, y, z we can assume that gcdpx, y, zq “ 1. Then I claim that gcdpx, cq “ 1.
To see this, assume for contradiction that c and x have a common prime divisor p, so that
p divides ax2 ` cz2 “ ´by2. But we know that p - b because gcdpb, cq “ 1 so Euclid’s Lemma
tells us that p|y. Then since p|x and p|y we see that p2 divides ax2 ` by2 “ ´cz2. But we
already know that p|c, and since c is squarefree this implies that p2|cz2 ñ p|z. We have shown
that p is a common divisor of x, y, z which contradicts the fact that gcdpx, y, zq “ 1.

In summary we conclude that gcdpx, cq “ 1 and hence the element rxsc P Z{cZ is invertible.
Finally, we reduce the equation ax2 ` by2 ` cz2 “ 0 mod c to obtain

rax2 ` by2 ` cz2sc “ r0sc

rax2 ` by2sc “ r´cz
2sc

rax2 ` by2sc “ r0sc

rax2sc “ r´by
2sc

rasc “ r´by
2sc ¨ rx

´2sc

r´bsc ¨ rasc “ r´bsc ¨ r´bysc ¨ rx
´2sc
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r´absc “
`

r´bsc ¨ rysc ¨ rx
´1sc

˘2
,

and hence r´absc is square.

Now the hard direction. Assume that each of the elements r´absc, r´acsb and r´bcsa has
a square root. Our goal is to prove that there exist integers p0, 0, 0q ‰ px, y, zq P Z3 such that

ax2 ` by2 ` cz2 “ 0.

There are two steps:

(1) Since we have abc ‰ 0, not all of the same sign, we can assume without loss of generality
that exactly two of a, b, c are negative and hence abc ě 1. We will prove that there exist
integers A,B,C,D,E, F P Z such that for any integers px, y, zq P Z3 we have

rax2 ` by2 ` cz2sabc “ rAx`By ` Czsabc ¨ rDx` Ey ` Fzsabc.

To do this we consider any integers px, y, zq P Z3 and then we reduce the integer ax2`by2`cz2 P
Z mod a. Since gcdpa, bq “ 1 we know that there exists b˚ P Z with rbb˚sa “ r1sa and since
r´bcsa is square we have r´basa “ rk

2sa for some k P Z. Then we obtain

rax2 ` by2 ` cz2sa “ rby
2 ` cy2sa

“ rbsa ¨ ry
2 ` b˚cz2sa

“ rbsa ¨ ry
2 ´ pb˚q2p´bcqz2sa

“ rbsa ¨ ry
2 ´ pb˚q2k2z2sa

“ rbsa ¨ ry
2 ´ pb˚kzq2sa

“ rbsa ¨ rpy ´ b
˚kzqpy ` b˚kzqsa

“ r0x` by ´ kzsa ¨ r0x` y ` b
˚kzsa.

In other words, there exist integers A1, B1, C1, D1, E1, F1 P Z such that

rax2 ` by2 ` cz2sa “ rA1x`B1y ` C1zsa ¨ rD1x` E1y ` F1zsa

and similar arguments show that there exist integers A2, . . . , F3 P Z such that

rax2 ` by2 ` cz2sb “ rA2x`B2y ` C2zsb ¨ rD2x` E2y ` F2sb

rax2 ` by2 ` cz2sc “ rA3x`B3y ` C3zsc ¨ rD3x` E3y ` F3sc.

Now since a, b, c are pairwise coprime, the Chinese Remainder Theorem from Section 3.5 tells
us that there exists an integer A P Z satisfying

rAsa “ rA1sa

rAsb “ rA2sb

rAsc “ rA3sc,
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and similarly we have integers B,C,D,E, F P Z so that

rax2 ` by2 ` cz2sa “ rAx`By ` Czsa ¨ rDx` Ey ` Fzsa

rax2 ` by2 ` cz2sb “ rAx`By ` Czsb ¨ rDx` Ey ` Fzsb

rax2 ` by2 ` cz2sc “ rAx`By ` Czsc ¨ rDx` Ey ` Fzsc.

Finally, recall from HW3.4 that if we have rdsa “ resa and rdsb “ resb for some integers a, b, d, e
with gcdpa, bq “ 1 then it follows that rdsab “ resab. Since a, b, c are pairwise coprime we can
apply this argument twice to the above system of three congruences to obtain

(˚) rax2 ` by2 ` cz2sabc “ rAx`By ` Czsabc ¨ rDx` Ey ` Fzsabc

as desired.

(2) The congruence (˚) suggests a strategy to find integers p0, 0, 0q ‰ px, y, zq P Z3 such that
ax2 ` by2 ` cz2 “ 0. Observe that the expression

rAx`By ` Czsabc P Z{abcZ

can take on at most abc distinct values. Since there exist infinitely many integer triples
px, y, zq P Z3 there must be two distinct triples px1, y1, z1q ‰ px2, y2, z2q with the property

rAx1 `By1 ` Cz1sabc “ rAx2 `By2 ` Cz2sabc

rpAx1 `By1 ` Cz1q ´ pAx2 `By2 ` Cz2qsabc “ r0sabc

rApx1 ´ x2q `Bpy1 ´ y2q ` Cpz1 ´ z2qsabc “ r0sabc.

In other words, we have found integers px, y, zq :“ px1 ´ x2, y1 ´ y2, z1 ´ z2q ‰ p0, 0, 0q such
that rAx`By ` Czsabc “ r0sabc and then from the congruence (˚) we obtain

(˚˚) rax2 ` by2 ` cz2sabc “ r0sabc.

This doesn’t necessarily mean that ax2`by2`cz2 “ 0, but it does mean that ax2`by2`cz2 “
abck for some k P Z. Our goal is to choose the points px1, y1, z1q and px2, y2, z2q sufficiently
close together so that k “ 0. To do this we consider the following rectangular box of integer
points:

Box :“ tpx, y, zq P Z3 : 0 ď x ď
a

|bc|, 0 ď y ď
a

|ac|, 0 ď z ď
a

|ab|u

Observe that the number of x P Z satisfying 0 ď x ď
a

|bc| is strictly greater than
a

|bc| and
a similar observation holds for y and z. Thus the number of points in the box satisfies

#Box ą
a

|bc|
a

|ac|
a

|ab| “
a

pabcq2 “ |abc|.

Since there are more than |abc| points in the box it follows that we can choose the two points
px1, y1, z1q ‰ px2, y2, z2q from inside the box. Then since a, b, c are pairwise coprime and
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abc ‰ 0 is squarefree we see that none of
a

|bc|,
a

|ac| and
a

|ab| is an integer. Thus the point
px, y, zq “ px1 ´ x2, y1 ´ y2, z1 ´ z2q ‰ p0, 0, 0q satisfies

|x| ă
a

|bc|, |y| ă
a

|ac| and |z| ă
a

|ab|,

and hence also
0 ă |a|x2 ` |b|y2 ` |c|z2 ă 3|abc|.

Finally, since a, b, c don’t all have the same sign we can assume without loss of generality
that a is positive and b, c are negative. In particular, this implies that |abc| “ abc ą 0.
Then we have

ax2 ` by2 ` cz2 ă ax2 ă abc

and
ax2 ` by2 ` cz2 ě by2 ` cz2 ą bp´acq ` cp´abq “ ´2abc.

And combining these inequalities with the congruence (˚˚) gives

ax2 ` by2 ` cz2 P t0,´abcu.

If ax2 ` by2 ` cz2 “ 0 then we are done so let us assume that ax2 ` by2 ` cz2 “ ´abc. Then
we can make the clever23 change of variables

px1, y1, z1q :“ pxz ´ by, yz ` ax, z2 ` abq ‰ p0, 0, 0q

to obtain

apx1q2 ` bpy12q ` cpz1q2 “ apxz ´ byq2 ` bpyz ` axq2 ` cpz2 ` abq2

“ pax2 ` by2 ` cz2qz2 ` 2abcz2 ` ab2y2 ` a2bx2 ` a2b2c

“ p´abcqz2 ` 2abcz2 ` ab2y2 ` a2bx2 ` a2b2c

“ abcz2 ` ab2y2 ` a2bx2 ` a2b2c

“ abpax2 ` by2 ` cz2q ` a2b2c

“ abp´abcq ` a2b2c

“ 0.

Thus we have found the desired solution p0, 0, 0q ‰ px1, y1, z1q P Z3. To complete the proof of
the bound, one can show by an easy and tedious computation that

0 ă |a|px1q2 ` |b|py1q2 ` |c|pz1q2 “ apx1q2 ´ bpy1q2 ´ cpz1q2 ă 8|abc|.

Since the bound is symmetric in a, b, c we observe that it is independent of our assumption
that a ą 0 ą b, c. This completes the proof of Legendre’s Theorem.

23too clever
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6 Quadratic Reciprocity

6.1 Primitive Roots and Euler’s Criterion

In the last section we considered the Legendre equation

ax2 ` by2 ` cz2 “ 0

with integer coefficients pa, b, cq P Z3 satisfying abc ‰ 0. We proved Legendre’s Theorem
which says that a nontrivial integer solution p0, 0, 0q ‰ px, y, zq P Z3 exists if and only if
certain elements have modular square roots. As a free corollary of the existence proof we
also obtained a bound on the size of the smallest nontrivial solution, however our bound was
not optimal. The sharpest possible bound was obtained by Holzer (1950) for the case when
a, b, c are squarefree and pairwise relatively prime. Mordell (1951) gave an elementary proof
of Holzer’s result and then Williams (1988) generalized the result to arbitrary a, b, c. I will
state their result without proof.

Theorem (Smallest Solution to Legendre’s Equation). Consider any integers pa, b, cq P
Z3 with abc ‰ 0 and d “ gcdpa, b, cq. If the Legendre equation

ax2 ` by2 ` cz2 “ 0

has a nontrivial integer solution p0, 0, 0q ‰ px, y, zq P Z3 then it has a solution satisfying

|x| ď

a

|bc|

d
, |y| ď

a

|ac|

d
and |z| ď

a

|ab|

d
.

{{{

Thus by testing every integer point in the box

!

px, y, zq P Z3 : 0 ď x ď
a

|bc|{d, 0 ď y ď
a

|ac|{d, 0 ď z ď
a

|ab|{d
)

we obtain an algorithm of complexity |abc|{d3 that either finds a nontrivial solution to Legen-
dre’s Equation or proves that no such solution exists. For the purpose of computing a solution
there is probably no faster method.

However, this algorithm is in some sense unsatisfying because it ignores the criterion from
Legendre’s Theorem on the existence of certain square roots. In this section and the next we
will pursue a deeper study of square roots in order to understand the nature of the solutions.
At the end of the chapter we will obtain a much faster algorithm that determines whether a
solution exists without actually finding a solution. This discussion will lead us naturally into
some deeper concepts of number theory.

Our general goal is to determine when a given integer is a quadratic residue (i.e., has a square
root) mod n. To begin the study we assume that n “ p is prime.
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Definition of the Legendre Symbol. For any integers a, p P Z with p prime we define the
Legendre symbol as follows:

ˆ

a

p

˙

2

“

$

&

%

1 if Dx P Z with rasp “ rx
2sp

´1 if Ex P Z with rasp “ rx
2sp

0 if rasp “ r0sp

Warning: Most authors omit the subscript “2” from the Legendre symbol, which I think
results in one of the most confusing notations in any branch of mathematics. {{{

When p “ 2 we observe that pa{2q2 “ 0 for a even and pa{2q2 “ 1 for a odd, and there is
nothing else to say, so let us assume that p is an odd prime. The main theorem of this section
is an explicit and easily computable24 formula for the Legendre symbol.

Theorem (Euler’s Criterion). Let p be an odd prime. Then for any integer p we have

„ˆ

a

p

˙

2



p

“

”

app´1q{2
ı

p
.

{{{

As an immediate corollary we obtain the following important fact.

Corollary of Euler’s Criterion. Let p be an odd prime. Then for all a, b P Z we have

ˆ

a

p

˙

2

¨

ˆ

b

p

˙

2

“

ˆ

ab

p

˙

2

.

{{{

In fancier terms, we can say that the function pZ{pZqˆ Ñ t˘1u defined by rasp ÞÑ pa{pq2 is a
“homomorphism” of multiplicative groups. In even fancier terms, the function rasp ÞÑ pa{pq2
is called a “character” of the group pZ{pZqˆ, and for this reason the Legendre symbol pa{pq2
is also called the quadratic character of a mod p.

Proof of the Corollary. We don’t really need Euler’s Criterion to prove this, but with
Euler’s Criterion the proof becomse trivial:

„ˆ

a

p

˙

2



p

¨

„ˆ

b

p

˙

2



p

“ rapp´1q{2sp ¨ rb
pp´1q{2sp

“ rapp´1q{2 ¨ bpp´1q{2sp

24because modular exponentiation is easy
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“ rpabqpp´1q{2sp

“

„ˆ

ab

p

˙

2



p

.

Then the result follows because p ą 2.

Instead of presenting the quickest proof of Euler’s Criterion I will present the best proof,
and this will also give me an excuse to introduce some ideas that should be part of every
undergraduate number theory course. I will state these ideas as three separate lemmas.

Lemma 1 (Counting Reduced Fractions). For all n P Z with n ě 1 we have

n “
ÿ

1ďd|n

ϕpdq,

where the sum runs over all positive divisors of n. {{{

Proof. For each integer n ě 1 we define the following two sets of fractions:

Fn :“

"

1

n
,

2

n
, ¨ ¨ ¨ ,

n

n

*

,

F 1n :“

"

k

n
: 1 ď k ď n^ gcdpk, nq “ 1

*

.

Note that by definition we have #Fn “ n and #F 1n “ ϕpnq. By reducing each fraction in Fn
to lowest terms, I will show that Fn decomposes as the disjoint union

Fn “
ž

1ďd|n

F 1d,

and then the theorem will follow by taking the cardinality of each side. There are three things
to show:

(1) Fn Ď Y1ďd|nF
1
d : Consider any fraction k{n P Fn, i.e., with 1 ď k ď n, and suppose

that we have λ “ gcdpk, nq with k “ λk1 and n “ λn1. By by dividing the numberator and
denominator by their greatest common divisor we obtain

k

n
“
λk1

λn1
“
k1

n1
.

with gcdpk1, n1q “ 1 and 1 ď k1 ď n1. [Why?] It follows that k{n P F 1n1 and then since n1 is a
positive divisor of n we obtain k{n P Y1ďd|nF

1
d as desired.

(2) Y1ďd|nF
1
d Ď Fn : Suppose that the fraction α P Q is an element of the union Y1ďd|nF

1
d.

Then by definition we must have α P Fd for some positive divisor d|n, i.e., we must have
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α “ k{d with gcdpk, dq “ 1 and 1 ď k ď d. But then since d is a divisor of n we have n “ λd
for some 1 ď λ P Z and it follows that

k

d
“
λk

λd
“
λk

n
P Fn

as desired. [Why is 1 ď λk ď n?]

(3) Y1ďd|nF
1
d “

š

1ďd|n F
1
d : To show that the union is disjoint, assume for contradiction that

there exists a fraction α P Q such that we have α P F 1dXF
1
e for distinct positive integers d ‰ e.

Since α P F 1d we must have α “ k{d for some 1 ď k ď d with gcdpk, dq “ 1 and since α P F 1e
we must have α “ k1{e for some 1 ď k1 ď e with gcdpk1, eq “ 1. Since k{d “ α “ k1{e we see
that

ke “ k1d.

But now since e|k1d with gcdpk1, eq “ 1, Euclid’s Lemma says that e|d, and a similar argument
shows that d|e. Finally, since d and e are both positive we must have d “ e, which is the
desired contradiction.

For example, note that the positive divisors of n “ 15 “ 3 ¨ 5 are 1, 3, 5 and 15. Then note
that we have

ϕp1q ` ϕp3q ` ϕp5q ` ϕp15q “ 1` p3´ 1q ` p5´ 1q ` p3´ 1qp5´ 1q “ 1` 2` 4` 8 “ 15

as expected. The totient function value ϕp1q is not really defined but we will adopt the
convention ϕp1q :“ 1 precisely so this formula works out.

The next lemma has to do with counting solutions of polynomial equations in the rings Z{nZ
for various n. As an extreme case, one can check by hand that the equation

rx2 ´ 1s8 “ r0s8

is true for every element of the ring rxs8 P Z{8Z. However, it turns out that something very
special happens in the rings Z{pZ for prime p.

Lemma 2 (Lagrange’s Polynomial Congruence Theorem). Let p P Z be prime and
consider a polynomial of degree d with integer coefficients:

fpxq “ adx
d ` ¨ ¨ ¨ ` a1x` a0

with a0, a1, . . . , ad P Z and ad ‰ 0. If radsp ‰ r0sp then I claim that the equation

rfpxqsp “ r0sp

has at most d distinct solutions rxsp P Z{pZ. {{{

Remark: This follows from a well-known theorem in abstract algebra. That is, if K is any field
and if fpxq P Krxs is a polynomial of degree d then there exist at most d distinct solutions
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x P K of the equation fpxq “ 0. The lemma then follows because Z{pZ is a field. However, I
prefer to present the proof in language that Lagrange would recognize.

Proof. We will use induction on the degree d. If d “ 1 then the polynomial has the form

fpxq “ a1x` a0

with a1, a0 P Z and ra1sp ‰ r0sp. Then since gcdpa1, pq “ 1 we see that the element ra1sp is
invertible and we obtain a unique solution:

ra1x` a0sp “ r0sp

ra1sp ¨ rxsp “ r´a0sp

rxsp “ ra
´1
1 sp ¨ r´a0sp.

Now let us fix d ě 2 and assume for induction that the theorem is true for polynomials
of degree d´ 1. If the equation rfpxqsp “ r0sp has no solutions then we are done, so suppose
that there exists b P Z with rfpbqsp “ r0sp. If this is the only solution then we are still done
because d ě 2. So suppose that we have another solution rfpcqsp “ r0sp with rbsp ‰ rcsp. If we
can show that there are at most d ´ 1 such solutions rcsp with rcsp ‰ rbsp then it will follow
that rfpxqsp “ r0sp has at most d solutions as desired.

To prove this we will use the fact that for all integers x, n P Z with n ě 1 we have

pxn ´ bnq “ px´ bqpxn´1 ` xn´2b` ¨ ¨ ¨ ` xbn´2 ` bn´1q.

Then since rfpbqsp “ r0sp we compute that

rfpxqsp “ rfpxqsp ´ rfpbqsp

“ rfpxq ´ fpbqsp

“ radpx
d ´ bdq ` ¨ ¨ ¨ ` a1px´ bq ` 0sp

“ rpx´ bqpadx
d´1 ` lower terms in x qsp

“ rx´ bsp ¨ rgpxqsp

for some polynomial gpxq P Zrxs of degree d ´ 1 whose leading coefficient ad is not divisible
by p. Now if rcsp is any solution of rfpcqsp “ r0sp with rcsp ‰ rbsp, then since the element
rc´ bsp ‰ r0sp is invertible we obtain

r0sp “ rfpcqsp

r0sp “ rc´ bsp ¨ rgpcqsp

r0sp “ rgpcqsp.

It follows from the induction hypothesis that there exist at most d´1 distinct such rcsp, which
completes the proof.

To set up the last of the three lemmas, recall from Chapter 3 that for all integers a, n P Z
with gcdpa, nq “ 1 there exists a positive integer ordnpaq ě 1 with the following properties:
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• raordnpaqsn “ r1sn,

• raksn ‰ r1sn for all 0 ă k ă ordnpaq.

The integer ordnpaq is called the multiplicative order of a mod n and it follows from Euler’s
Totient Theorem that ordnpaq|ϕpn´ 1q. However, the precise value of ordnpaq is very difficult
to predict in general. Suppose for the sake of argument that there exists an element rgsn P
pZ{nZqˆ with the property that ordnpgq “ ϕpnq. Then it follows that every element of
pZ{nZqˆ can be expressed as a power of this element:

pZ{nZqˆ “
!

rgsn, rg
2sn, . . . , rg

ϕpnqsn “ r1sn

)

.

In this case we say that the group pZ{nZqˆ is cyclic and we say that rgsn P pZ{nZqˆ is a
genertor (hence the letter “g”). An alternative and older notation would call g a primitive
root mod n.

[Warning: The additive group pZ{nZ,`, r0snq is always cyclic with generator r1sn. Here we
are asking whether the multiplicative group ppZ{nZqˆ,ˆ, r1snq is cyclic, which is a separate
issue.]

A primitive root is a nice thing to have because then we can phrase all properties of pZ{nZqˆ
in terms of powers of g. In particular, we would see that an element rasn P pZ{nZqˆ has a
square root if and only if it is an even power of rgsn. Unfortunately, primitive roots don’t
always exist. For example, recall that we have ϕp8q “ 4 with

pZ{8Zqˆ “ tr1s8, r3s8, r5s8, r7s8u .

The following table lists the multiplicative order of each element of the group:

a 1 3 5 7

ord8paq 1 2 2 2

Observe that we always have ord8paq|ϕp8q “ 4 as required by Euler’s Totient Theorem, but
it is never the case that ord8paq “ ϕp8q. This is related to the fact that the equation
rx2 ´ 1s8 “ r0s8 has too many solutions (i.e., more than 2) in the ring Z{8Z.

The celebrated “Primitive Root Theorem” says that primitive roots always exist in the group
pZ{pZqˆ when p is prime.25 Unfortunately, the proof is non-constructive, i.e., it does not
tell us how to actually find a primitive root. However, we will see that there exist exactly
ϕpϕppqq “ ϕpp´ 1q primitive roots mod p so at least we know how long it will take us to find
one via random search.

25The general theorem says that the group pZ{nZqˆ is cyclic if and only if n “ 2pk for some odd prime p,
but we won’t prove this.
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Lemma 3 (The Primitive Root Theorem). For any prime p P Z the group of units
pZ{pZqˆ is cyclic. That is, there exists an element rgsp P pZ{pZqˆ with multiplicative order
ordppgq “ ϕppq “ p´1. More precisely, we will show that there are exactly ϕpϕppqq “ ϕpp´1q
such “primitive roots.” {{{

Sadly, there is no really short proof of this fact. We will have to get our hands dirty.

Proof. Recall from Euler’s Totient Theorem that each element of pZ{pZqˆ has order d for
some positive divisor 1 ď d|ϕppq. We will prove that the number of elements of order d is
exactly ϕpdq. Then the result follows by putting d “ ϕppq.

So fix any positive divisor 1 ď d|ϕppq and suppose that there exists an element rasp P pZ{pZqˆ
of order d. By definition this means that the elements

(˚) rasp, ra
2sp, . . . , ra

d´1sp, ra
dsp “ r1sp

are all distinct, since otherwise we would have raksp “ ra
`sp for some 1 ď k ă ` ď d and it

would follow that ra`´ksp “ r1sp for some 1 ď ` ´ k ă d, contradicting the fact that d is the
smallest positive integer such that radsp “ r1sp. Furthermore, since radsp “ r1sp we see that

rpakqdsp “ rpa
dqksp “

´

radsp

¯k
“ pr1spq

k
“ r1sp

for all integers k P Z. It follows that the d distinct elements (˚) are all solutions to the equation
rxd ´ 1sp “ r0sp. But Lemma 2 says that this equation has at most d solutions, so (˚) is
the complete solution.

We have seen that every element rxsp P pZ{pZqˆ of order d is in the list (˚), and hence
the number of such elements is ď d. But this is not a sharp estimate because some of the
elements (˚) have order less than d. To be precise, consider a fixed element raksp and let
λ :“ gcdpk, dq with k “ λk1 and d “ λd1. Then I claim that the order of the element raksp is
precisely d1 “ d{gcdpk, dq. To see this, first note that

rpakqd
1

sp “ ra
λk1d1sp “ rpa

λd1qksp “ rpa
dqk

1

sp “

´

radsp

¯k1

“ pr1spq
k1
“ r1sp.

Now assume that we have rpakqnsp “ ra
knsp “ r1sp for some positive integer 1 ď n P Z. Since

d is the order of rasp this implies that d divides kn. [Remind yourself why this is true. Hint:
Divide d by kn and show that the remainder must be zero.] Thus we have kn “ d` for some
` P Z. Then since λ ‰ 0 we have

kn “ d`

pλk1qn “ pλd1q`

λpk1nq “ λpd1`q

k1n “ d1`.
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Finally, since d1|k1n and gcdpk1, d1q “ 1, Euclid’s Lemma says that d1|n and since n is positive
this implies that d1 ď n. This completes the proof that ordppa

kq “ d{gcdpk, dq. We conclude
that if the group pZ{pZqˆ contains an element rasp of order d, then the complete set of
elements of order d is

!

raksp : 1 ď k ď d^ d{gcdpk, dq “ d
)

“

!

raksp : 1 ď k ď d^ gcdpk, dq “ 1
)

,

and there are precisely ϕpdq of these elements. In summary, for any positive divisor 1 ď d|ϕppq,
the group pZ{pZqˆ contains either 0 or ϕpdq elements of order d.

It only remains to count them up and see what we have. So let νd denote the number of
elements of order d and recall that νd P t0, ϕpdqu. Then on the one hand we have

(˚) p´ 1 “ ϕppq “ #pZ{pZqˆ “
ÿ

1ďd|n

νd ď
ÿ

1ďd|n

ϕpdq

with equality if and only if νd “ ϕpdq for all 1 ď d|ϕppq. On the other hand, we know from
Lemma 1 that

ÿ

1ďd|ϕppq

ϕpdq “ ϕppq “ p´ 1.

Thus the inequality (˚) is really an equality, and it follows that νd “ ϕpdq for all 1 ď d|ϕppq
as desired.

That was a lot of work, but we learned some wholesome things that will help us later.

Proof of Euler’s Criterion. Let p be an odd prime so that pp´ 1q{2 P Z and consider any
integer a P Z. We want to prove that rpa{pq2sp “ ra

pp´1q{2sp.

If rasp “ r0sp then by definition we have pa{pq2 “ 0 and hence

rapp´1q{2sp “ praspq
pp´1q{2

“ pr0spq
pp´1q{2

“ r0sp “

„ˆ

a

p

˙

2



p

.

So let us assume that rasp ‰ r0sp, i.e., rasp P pZ{pZqˆ. Then Euler’s Totient Theorem gives

„

´

app´1q{2
¯2
´ 1



p

“ rap´1sp ´ r1sp “ ra
ϕppqsp ´ r1sp “ r1sp ´ r1sp “ r0sp.

But Lagrange’s Congruence Theorem says that the equation rx2 ´ 1sp “ r0sp has at most two
solutions rxsp P Z{pZ. Since rxsp “ r1sp and rxsp “ r´1sp are solutions we conclude that

rapp´1q{2sp “ r1sp or r´1sp.

Similarly we have by definition that
ˆ

a

p

˙

2

“ 1 or ´ 1
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and it only remains to show that the functions rapp´1q{2sp and rpa{pq2sp are equal to r1sp for
the same values of a.

To show this we will use the Primitive Root Theorem, which tells us that there exists a
generator rgsp such that pZ{pZqˆ “ trgsp, rg

2sp, . . . , rg
p´1sp “ r1spu. In particular, we have

rasp “ rg
ksp for some 1 ď k ď p´ 1. There are two things to show:

(1) We have rapp´1q{2sp “ r1sp if and only if k is even. Suppose that k is even with
k “ 2k1. Then by Euler’s Totient Theorem we have

rapp´1q{2sp “

„

´

g2k
1
¯pp´1q{2



p

“

”

pgk
1

qp´1
ı

p
“ r1sp

and hence rapp´1q{2 ´ 1sp “ r0sp. We have seen that the equation rxpp´1q{2 ´ 1sp “ r1sp holds
for the pp´ 1q{2 distinct elements

rxsp P
 

rg2sp, rg
4sp, . . . , rg

p´1sp “ r1sp
(

.

But then since the polynomial xpp´1q{2´1 P Zrxs has degree pp´1q{2, Lagrange’s Congruence
Theorm tells us that this is the full solution.

(2) We have pa{pq2 “ 1 if and only if k is even. If k is even (say k “ 2k1) then we see

that rasp “ rg
2k1sp “

´

rgk
1

sp

¯2
is square and hence pa{pq2 “ 1. Conversely, let k be odd and

assume for contradiction that pa{pq2 “ 1, i.e., that we have rgksp “ rx2sp for some x P Z.
Since rgsp is a generator we have rxsp “ rg

`sp for some ` P Z and then

rgksp “ rx
2sp ùñ rgksp “ rpg

`q2sp ùñ rgk´2`sp “ r1sp.

But since ϕppq “ p ´ 1 is the order of rgsp this implies that pp ´ 1q|pk ´ 2`q. Finally, since
p´ 1 is even this implies that 2|pk ´ 2`q which contradicts the fact that k is even.

This completes the proof of Euler’s Criterion.

Here are some exercises:

(a) Use Euler’s Criterion to show that r3s11 is not square.

(b) Recall from the proof of the Primitive Root Theorem that when p is prime the group
of units pZ{pZqˆ contains exactly ϕpdq elements of order d for each positive divisor
1 ď d|ϕppq. Use this to find the number of elements of each order in pZ{11Zqˆ.

(c) Let rgsp P pZ{pZqˆ be a primitive root and recall that rgksp has order pp´ 1q{gcdpk, pq
for each k P Z. Use this to show that r3s11 has order

Special cases a “ ´1 and a “ 2. For odd primes p we have

ˆ

´1

p

˙

2

“ p´1qpp´1q{2 “

"

1 p “ `1 pmod 4q
´1 p “ ´1 pmod 4q
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ˆ

2

p

˙

2

“ p´1qpp
2´1q{8 “

"

1 p “ ˘1 pmod 8q
´1 p “ ˘3 pmod 8q

Application: Infinitely many primes “ 1, 3, 5, 7 mod 8.

6.2 Quadratic Reciprocity

A bit of group theory.

Zolotarev Reciprocity and dealing cards.

7 Integer Points on Conics

The equations x2 ` y2 “ p and x2 ´ 2y2 “ p.

Unique factorization in Zr
?
Ds.

Integer solutions of x2 ´Dy2 “ k.

114


	What is a Number?
	Natural Numbers
	Integers
	Rational Numbers

	The Equation ax+by=c
	Division With Remainder
	Greatest Common Divisor
	A Bit of Linear Algebra
	The Euclidean Algorithm
	Euclid's Lemma
	Summary

	Systems of Linear Diophantine Equations
	Bézout's Identity for Vectors
	The Euclidean Algorithm for Vectors
	The Euclidean Algorithm for Matrices
	Remarks

	Modular Arithmetic
	Equivalence Mod n
	Addition and Multiplication of Remainders
	Euler's Totient Function
	Unique Prime Factorization
	Chinese Remainder Theorem
	Chinese Remainder Theorem and Smith Normal Form
	Applications to Cryptography

	Rational Points on Conics
	Pythagorean Triples
	Reduction to Standard Form
	One Solution Gives Every Solution
	When Does a Solution Exist?

	Quadratic Reciprocity
	Primitive Roots and Euler's Criterion
	Quadratic Reciprocity

	Integer Points on Conics

