Problem 1. $\mathbb{Z}[\sqrt{-1}]$ is Euclidean. Consider the ring of Gaussian integers:

$$
\mathbb{Z}[\sqrt{-1}]=\{a+b \sqrt{-1}: a, b \in \mathbb{Z}\} .
$$

For any γ, δ we observe that $\sqrt{N(\gamma-\delta)}$ is the distance between γ and δ in the complex plane. For all $\alpha, \beta \in \mathbb{Z}[\sqrt{-1}]$ with $\beta \neq 0$, use this geometric interpretation to prove that there exist some (possibly non-unique) $\chi, \rho \in \mathbb{Z}[\sqrt{-1}]$ such that

$$
\left\{\begin{array}{l}
\alpha=\chi \beta+\rho, \\
N(\rho)<N(\beta) .
\end{array}\right.
$$

[Hint: The set of numbers $\{\chi \beta: \chi \in \mathbb{Z}[\sqrt{-1}]\}$ forms a square grid in the complex plane with side length $\sqrt{N(\beta)}$. Let $\chi \beta$ be the (possibly non-unique) grid point closest to α and define $\rho:=\alpha-\chi \beta$. Draw a picture to show that $\sqrt{N(\rho)}<\sqrt{N(\beta)}$.]

Problem 2. $\mathbb{Z}[\sqrt{-5}]$ is not Euclidean. Consider the ring

$$
\mathbb{Z}[\sqrt{-5}]=\{a+b \sqrt{-5}: a, b \in \mathbb{Z}\} .
$$

(a) Prove that 2 is irreducible in $\mathbb{Z}[\sqrt{-5}]$. [Hint: If $2=\alpha \beta$ for some non-units $\alpha, \beta \in$ $\mathbb{Z}[\sqrt{-5}]$ then we must have $N(\alpha)=N(\beta)=2$. But show that there do not exist any elements of norm 2 in the ring $\mathbb{Z}[\sqrt{-5}]$.]
(b) Observe that $2 \cdot 3=6=(1+\sqrt{-5})(1-\sqrt{-5})$ and hence 2 divides the product $(1+\sqrt{-5})(1-\sqrt{-5})$. But show that 2 does not divide $1+\sqrt{-5}$ or $1-\sqrt{-5}$. [Hint: Suppose that $2(a+b \sqrt{-5})=1+\sqrt{-5}$ for some integers $a, b \in \mathbb{Z}$.]

Problem 3. Pell's Equation. Use the method of continued fractions to find the complete integer solution $x, y \in \mathbb{Z}$ (with $x, y \geqslant 0$) to the equations

$$
x^{2}-d y^{2}=+1 \quad \text { and } \quad x^{2}-d y^{2}=-1
$$

in the following two cases:
(a) $d=13$
(b) $d=23$
[Remark: In one of these cases you will find that the equation $x^{2}-d y^{2}=-1$ has no solution.]

