Problem 1. Computing Legendre Symbols. Use Quadratic Reciprocity and its supplements to compute the Legendre symbol (47/67). [Hint: 47 and 67 are prime.]

$$\begin{pmatrix} 47\\ \overline{67} \end{pmatrix} = \begin{pmatrix} 67\\ \overline{47} \end{pmatrix} (-1)^{\frac{47-1}{2}\frac{67-1}{2}} = -\begin{pmatrix} 67\\ \overline{47} \end{pmatrix}$$
QR
$$= -\begin{pmatrix} 20\\ \overline{47} \end{pmatrix} = -\begin{pmatrix} 2^25\\ \overline{47} \end{pmatrix}$$
67 = 20 mod 4

$$= -\left(\frac{2}{5}\right)$$

$$= -(-1) = +1$$

$$47 = 2 \mod 5$$

$$2 \text{ is nonsquare mod } 5$$

We conclude that 47 is square mod 67. Since 67 is prime this means that 47 has exactly two square roots mod 67. My computer says that $\sqrt{47} = 28$ or 39 mod 67.

Problem 2. Quadratic Character of -2**.** Let p be an odd prime. We proved in class that

$$\left(\frac{-1}{p}\right) = \begin{cases} +1 & \text{if } p = 1 \mod 4, \\ -1 & \text{if } p = 3 \mod 4, \end{cases} \text{ and } \left(\frac{2}{p}\right) = \begin{cases} +1 & \text{if } p = 1,7 \mod 8, \\ -1 & \text{if } p = 3,5 \mod 8. \end{cases}$$

Compute the Legendre symbol (-2/p). [Hint: We know that (-2/p) = (-1/p)(2/p).]

Since (-2/p) = (-1/p)(2/p) we see that

$$\begin{pmatrix} -2\\ p \end{pmatrix} = \begin{cases} +1 & p = 1 \mod 4 \text{ and } p = 1,7 \mod 8\\ +1 & p = 3 \mod 4 \text{ and } p = 3,5 \mod 8\\ -1 & p = 1 \mod 4 \text{ and } p = 3,5 \mod 8\\ -1 & p = 3 \mod 4 \text{ and } p = 1,7 \mod 8 \end{cases}$$
$$= \begin{cases} +1 & p = 1 \mod 8\\ +1 & p = 3 \mod 8\\ -1 & p = 5 \mod 8\\ -1 & p = 5 \mod 8 \end{cases} = \begin{cases} +1 & p = 1,3 \mod 8\\ -1 & p = 5,7 \mod 8\\ -1 & p = 7 \mod 8 \end{cases}$$

Problem 3. Quadratic Character of 3. For any odd prime p, Quadratic Reciprocity says

$$\left(\frac{3}{p}\right) = \left(\frac{p}{3}\right)(-1)^{\frac{p-1}{2}\frac{3-1}{2}} = \left(\frac{p}{3}\right)(-1)^{\frac{p-1}{2}}.$$

Use this to compute the Legendre symbol (3/p). [Hint: First observe that (p/3) = 1 when $p = 1 \mod 3$ and (p/3) = -1 when $p = 2 \mod 3$. Observe also that $(-1)^{(p-1)/2} = 1$ when $p = 1 \mod 4$ and $(-1)^{(p-1)/2} = -1$ when $p = 3 \mod 4$. Now use the Chinese Remainder Theorem.]

First we write down the CRT bijection $(x \mod 12) \mapsto (x \mod 3, x \mod 4)$ from the group $(\mathbb{Z}/12\mathbb{Z})^{\times}$ to the group $(\mathbb{Z}/3\mathbb{Z})^{\times} \times (\mathbb{Z}/4\mathbb{Z})^{\times}$:

$x \mod 12$	$(x \bmod 3, x \bmod 4)$
1	(1,1)
5	(2, 1)
7	(1,3)
11	(2,3)

Next, since 1 is square mod 3 and 2 is nonsquare mod 3 we observe that 1

$$\left(\frac{p}{3}\right) = \begin{cases} +1 & p = 1 \mod 3\\ -1 & p = 2 \mod 3 \end{cases}$$

Then since $(3/p) = (p/3)(-1)^{\frac{p-1}{2}}$, we combine these two facts to obtain

$$\begin{pmatrix} 3\\ \overline{p} \end{pmatrix} = \begin{cases} +1 & p = 1 \mod 3 \text{ and } p = 1 \mod 4 \\ +1 & p = 2 \mod 3 \text{ and } p = 3 \mod 4 \\ -1 & p = 1 \mod 3 \text{ and } p = 3 \mod 4 \\ -1 & p = 2 \mod 4 \text{ and } p = 1 \mod 4 \end{cases}$$
$$= \begin{cases} +1 & p = 1 \mod 12 \\ +1 & p = 11 \mod 12 \\ +1 & p = 7 \mod 12 \\ -1 & p = 5 \mod 12 \end{cases} = \begin{cases} +1 & p = 1, 11 \mod 12 \\ -1 & p = 5, 7 \mod 12 \\ -1 & p = 5 \mod 12 \end{cases}$$

[Remark: More generally, it can be proved that for odd primes $p \neq q$ we have

$$\left(\frac{q}{p}\right) = +1 \quad \Leftrightarrow \quad p = \pm \beta^2 \mod 4q \text{ for some odd integer } 1 \leq \beta < \sqrt{4q}.$$

But this is difficult to prove because it is logically equivalent to QR.]²

Problem 4. Infinitely Many Primes = 3 mod 8. Let p_1, \ldots, p_k be a set of primes such that $p_i = 3 \mod 8$ for all *i*, and consider the number

$$N = (p_1 \cdots p_k)^2 + 2.$$

We will use this to show that there exists a prime number $p = 3 \mod 8$ that is not in the list.

- (a) Show that $N = 3 \mod 8$.
- (b) Show that every prime divisor p|N satisfies p = 1 or $p = 3 \mod 8$. [Hint: If p|N then show that $-2 = (p_1 \cdots p_k)^2 \mod p$. Now use Problem 2.]
- (c) Combine (a) and (b) to show that there exists a prime divisor p|N satisfying $p = 3 \mod 8$. [Hint: If all prime divisors = 1 mod 8 then $N = 1 \mod 8$.]
- (d) Show that the prime p from part (c) is not in the list p_1, \ldots, p_k . [Hint: $N = 2 \mod p_i$.]

¹We assume that $p \neq 3$.

²See David Cox, Primes of the form $x^2 + ny^2$, page 14.

(a): (The original version of this said that $N = 2 \mod 8$, which is wrong. Sorry.) Since $p_i = 3 \mod 8$ for all *i*, we have (working mod 8)

$$N = (3 \cdot 3 \cdots 3)^2 + 2$$

= 3² · 3² · · · 3² + 2
= 1 · 1 · · · 1 + 2
= 3.

(b): If p|N then we observe that -2 is square mod p because (working mod p) we have

$$N = 0$$
$$(p_1 \cdots p_k)^2 + 2 = 0$$
$$(p_1 \cdots p_k)^2 = -2.$$

It follows from Problem 2 that $p = 1, 3 \mod 8$.

(c): Consider the prime factorization of N:

$$N = q_1 q_2 \cdots q_\ell.$$

From (b) we know that each factor satisfies $q_i = 1 \mod 8$ or $q_i = 3 \mod 8$. But if all of the factors are $= 1 \mod 8$ then (working mod 8) we have

$$N = q_1 q_2 \cdots q_\ell = 1 \cdot 1 \cdots 1 = 1,$$

which contradicts part (a). It follows that there exists some prime factor $q_i = 3 \mod 8$.

(d): In summary, we have shown that there exists a prime number p such that p|N (i.e., $N = 0 \mod p$) and $p = 3 \mod 8$. I claim that this number cannot be in the list p_1, \ldots, p_k . Indeed, for any i we have

 $N = p_i$ (some integer) + 2 = 2 mod p_i .

But if $p = p_i$ then this contradicts the fact that $N = 0 \mod p$.

[Remark: My old professor M. Ram Murty showed³ that this type of "Euclidean proof" of infinitely many primes $= a \mod b$ only works for $a^2 = 1 \mod b$. So we are still very far away from Dirichlet's Theorem.]

³Primes in certain arithmetic progessions, 1988.