
MTH 505: Number Theory Spring 2020
Homework 4 Drew Armstrong

Problem 1. Computing Legendre Symbols. Use Quadratic Reciprocity and its supple-
ments to compute the Legendre symbol p47{67q. [Hint: 47 and 67 are prime.]
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We conclude that 47 is square mod 67. Since 67 is prime this means that 47 has exactly two
square roots mod 67. My computer says that

?
47 “ 28 or 39 mod 67.

Problem 2. Quadratic Character of ´2. Let p be an odd prime. We proved in class that
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Compute the Legendre symbol p´2{pq. [Hint: We know that p´2{pq “ p´1{pqp2{pq.]

Since p´2{pq “ p´1{pqp2{pq we see that
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Problem 3. Quadratic Character of 3. For any odd prime p, Quadratic Reciprocity says
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Use this to compute the Legendre symbol p3{pq. [Hint: First observe that pp{3q “ 1 when

p “ 1 mod 3 and pp{3q “ ´1 when p “ 2 mod 3. Observe also that p´1qpp´1q{2 “ 1 when p “ 1

mod 4 and p´1qpp´1q{2 “ ´1 when p “ 3 mod 4. Now use the Chinese Remainder Theorem.]

First we write down the CRT bijection px mod 12q ÞÑ px mod 3, x mod 4q from the group
pZ{12Zqˆ to the group pZ{3Zqˆ ˆ pZ{4Zqˆ:

x mod 12 px mod 3, x mod 4q
1 p1, 1q
5 p2, 1q
7 p1, 3q
11 p2, 3q

Next, since 1 is square mod 3 and 2 is nonsquare mod 3 we observe that1
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[Remark: More generally, it can be proved that for odd primes p ‰ q we have
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But this is difficult to prove because it is logically equivalent to QR.]2

Problem 4. Infinitely Many Primes “ 3 mod 8. Let p1, . . . , pk be a set of primes such
that pi “ 3 mod 8 for all i, and consider the number

N “ pp1 ¨ ¨ ¨ pkq
2 ` 2.

We will use this to show that there exists a prime number p “ 3 mod 8 that is not in the list.

(a) Show that N “ 3 mod 8.
(b) Show that every prime divisor p|N satisfies p “ 1 or p “ 3 mod 8. [Hint: If p|N then

show that ´2 “ pp1 ¨ ¨ ¨ pkq
2 mod p. Now use Problem 2.]

(c) Combine (a) and (b) to show that there exists a prime divisor p|N satisfying p “ 3
mod 8. [Hint: If all prime divisors “ 1 mod 8 then N “ 1 mod 8.]

(d) Show that the prime p from part (c) is not in the list p1, . . . , pk. [Hint: N “ 2 mod pi.]

1We assume that p ‰ 3.
2See David Cox, Primes of the form x2

` ny2, page 14.



(a): (The original version of this said that N “ 2 mod 8, which is wrong. Sorry.) Since pi “ 3
mod 8 for all i, we have (working mod 8)

N “ p3 ¨ 3 ¨ ¨ ¨ 3q2 ` 2

“ 32 ¨ 32 ¨ ¨ ¨ 32 ` 2

“ 1 ¨ 1 ¨ ¨ ¨ 1` 2

“ 3.

(b): If p|N then we observe that ´2 is square mod p because (working mod p) we have

N “ 0

pp1 ¨ ¨ ¨ pkq
2 ` 2 “ 0

pp1 ¨ ¨ ¨ pkq
2 “ ´2.

It follows from Problem 2 that p “ 1, 3 mod 8.

(c): Consider the prime factorization of N :

N “ q1q2 ¨ ¨ ¨ q`.

From (b) we know that each factor satisfies qi “ 1 mod 8 or qi “ 3 mod 8. But if all of the
factors are “ 1 mod 8 then (working mod 8) we have

N “ q1q2 ¨ ¨ ¨ q` “ 1 ¨ 1 ¨ ¨ ¨ 1 “ 1,

which contradicts part (a). It follows that there exists some prime factor qi “ 3 mod 8.

(d): In summary, we have shown that there exists a prime number p such that p|N (i.e., N “ 0
mod p) and p “ 3 mod 8. I claim that this number cannot be in the list p1, . . . , pk. Indeed,
for any i we have

N “ pipsome integerq ` 2 “ 2 mod pi.

But if p “ pi then this contradicts the fact that N “ 0 mod p.

[Remark: My old professor M. Ram Murty showed3 that this type of “Euclidean proof” of
infinitely many primes “ a mod b only works for a2 “ 1 mod b. So we are still very far away
from Dirichlet’s Theorem.]

3Primes in certain arithmetic progessions, 1988.


