Problem 1. Computing Legendre Symbols. Use Quadratic Reciprocity and its supplements to compute the Legendre symbol (47/67). [Hint: 47 and 67 are prime.]

$$
\begin{array}{rlr}
\left(\frac{47}{67}\right) & =\left(\frac{67}{47}\right)(-1)^{\frac{47-1}{2} \frac{67-1}{2}}=-\left(\frac{67}{47}\right) & \mathrm{QR} \\
& =-\left(\frac{20}{47}\right)=-\left(\frac{2^{2} 5}{47}\right) & 67=20 \bmod 4 \\
& =-\left(\frac{2}{47}\right)^{2}\left(\frac{5}{47}\right)=-(\pm 1)^{2}\left(\frac{5}{47}\right)=-\left(\frac{5}{47}\right) & \text { multiplicative } \\
& =-\left(\frac{47}{5}\right)(-1)^{\frac{5-1}{2} \frac{47-1}{2}}=-\left(\frac{47}{5}\right) & \mathrm{QR} \\
& =-\left(\frac{2}{5}\right) & 47=2 \bmod 5 \\
& =-(-1)=+1 & 2 \text { is nonsquare } \bmod 5
\end{array}
$$

We conclude that 47 is square mod 67 . Since 67 is prime this means that 47 has exactly two square roots $\bmod 67$. My computer says that $\sqrt{47}=28$ or $39 \bmod 67$.

Problem 2. Quadratic Character of -2 . Let p be an odd prime. We proved in class that

$$
\left(\frac{-1}{p}\right)=\left\{\begin{array}{ll}
+1 & \text { if } p=1 \bmod 4, \\
-1 & \text { if } p=3 \bmod 4,
\end{array} \quad \text { and } \quad\left(\frac{2}{p}\right)= \begin{cases}+1 & \text { if } p=1,7 \bmod 8 \\
-1 & \text { if } p=3,5 \bmod 8\end{cases}\right.
$$

Compute the Legendre symbol $(-2 / p)$. [Hint: We know that $(-2 / p)=(-1 / p)(2 / p)$.]
Since $(-2 / p)=(-1 / p)(2 / p)$ we see that

$$
\begin{aligned}
\left(\frac{-2}{p}\right) & = \begin{cases}+1 & p=1 \bmod 4 \text { and } p=1,7 \bmod 8 \\
+1 & p=3 \bmod 4 \text { and } p=3,5 \bmod 8 \\
-1 & p=1 \bmod 4 \text { and } p=3,5 \bmod 8 \\
-1 & p=3 \bmod 4 \text { and } p=1,7 \bmod 8\end{cases} \\
& =\left\{\begin{array}{ll}
+1 & p=1 \bmod 8 \\
+1 & p=3 \bmod 8 \\
-1 & p=5 \bmod 8 \\
-1 & p=7 \bmod 8
\end{array}= \begin{cases}+1 & p=1,3 \bmod 8 \\
-1 & p=5,7 \bmod 8\end{cases} \right.
\end{aligned}
$$

Problem 3. Quadratic Character of 3. For any odd prime p, Quadratic Reciprocity says

$$
\left(\frac{3}{p}\right)=\left(\frac{p}{3}\right)(-1)^{\frac{p-1}{2} \frac{3-1}{2}}=\left(\frac{p}{3}\right)(-1)^{\frac{p-1}{2}} .
$$

Use this to compute the Legendre symbol $(3 / p)$. [Hint: First observe that $(p / 3)=1$ when $p=1 \bmod 3$ and $(p / 3)=-1$ when $p=2 \bmod 3$. Observe also that $(-1)^{(p-1) / 2}=1$ when $p=1$ $\bmod 4$ and $(-1)^{(p-1) / 2}=-1$ when $p=3 \bmod 4$. Now use the Chinese Remainder Theorem.]

First we write down the CRT bijection $(x \bmod 12) \mapsto(x \bmod 3, x \bmod 4)$ from the group $(\mathbb{Z} / 12 \mathbb{Z})^{\times}$to the group $(\mathbb{Z} / 3 \mathbb{Z})^{\times} \times(\mathbb{Z} / 4 \mathbb{Z})^{\times}$:

$x \bmod 12$	$(x \bmod 3, x \bmod 4)$
1	$(1,1)$
5	$(2,1)$
7	$(1,3)$
11	$(2,3)$

Next, since 1 is square $\bmod 3$ and 2 is nonsquare mod 3 we observe that ${ }^{1]}$

$$
\left(\frac{p}{3}\right)= \begin{cases}+1 & p=1 \bmod 3 \\ -1 & p=2 \bmod 3\end{cases}
$$

Then since $(3 / p)=(p / 3)(-1)^{\frac{p-1}{2}}$, we combine these two facts to obtain

$$
\begin{aligned}
\left(\frac{3}{p}\right) & = \begin{cases}+1 & p=1 \bmod 3 \text { and } p=1 \bmod 4 \\
+1 & p=2 \bmod 3 \text { and } p=3 \bmod 4 \\
-1 & p=1 \bmod 3 \text { and } p=3 \bmod 4 \\
-1 & p=2 \bmod 4 \text { and } p=1 \bmod 4\end{cases} \\
& =\left\{\begin{array}{ll}
+1 & p=1 \bmod 12 \\
+1 & p=11 \bmod 12 \\
-1 & p=7 \bmod 12 \\
-1 & p=5 \bmod 12
\end{array}= \begin{cases}+1 & p=1,11 \bmod 12 \\
-1 & p=5,7 \bmod 12\end{cases} \right.
\end{aligned}
$$

[Remark: More generally, it can be proved that for odd primes $p \neq q$ we have

$$
\left(\frac{q}{p}\right)=+1 \quad \Leftrightarrow \quad p= \pm \beta^{2} \bmod 4 q \text { for some odd integer } 1 \leqslant \beta<\sqrt{4 q}
$$

But this is difficult to prove because it is logically equivalent to QR. ${ }^{2}$

Problem 4. Infinitely Many Primes $=3 \bmod 8$. Let p_{1}, \ldots, p_{k} be a set of primes such that $p_{i}=3 \bmod 8$ for all i, and consider the number

$$
N=\left(p_{1} \cdots p_{k}\right)^{2}+2
$$

We will use this to show that there exists a prime number $p=3 \bmod 8$ that is not in the list.
(a) Show that $N=3 \bmod 8$.
(b) Show that every prime divisor $p \mid N$ satisfies $p=1$ or $p=3 \bmod 8$. [Hint: If $p \mid N$ then show that $-2=\left(p_{1} \cdots p_{k}\right)^{2} \bmod p$. Now use Problem 2.]
(c) Combine (a) and (b) to show that there exists a prime divisor $p \mid N$ satisfying $p=3$ $\bmod 8$. [Hint: If all prime divisors $=1 \bmod 8$ then $N=1 \bmod 8$.]
(d) Show that the prime p from part (c) is not in the list p_{1}, \ldots, p_{k}. [Hint: $N=2 \bmod p_{i}$.]

[^0](a): (The original version of this said that $N=2 \bmod 8$, which is wrong. Sorry.) Since $p_{i}=3$ $\bmod 8$ for all i, we have $($ working $\bmod 8)$
\[

$$
\begin{aligned}
N & =(3 \cdot 3 \cdots 3)^{2}+2 \\
& =3^{2} \cdot 3^{2} \cdots 3^{2}+2 \\
& =1 \cdot 1 \cdots 1+2 \\
& =3 .
\end{aligned}
$$
\]

(b): If $p \mid N$ then we observe that -2 is square $\bmod p$ because ($\operatorname{morking} \bmod p)$ we have

$$
\begin{aligned}
N & =0 \\
\left(p_{1} \cdots p_{k}\right)^{2}+2 & =0 \\
\left(p_{1} \cdots p_{k}\right)^{2} & =-2 .
\end{aligned}
$$

It follows from Problem 2 that $p=1,3 \bmod 8$.
(c): Consider the prime factorization of N :

$$
N=q_{1} q_{2} \cdots q_{\ell} .
$$

From (b) we know that each factor satisfies $q_{i}=1 \bmod 8$ or $q_{i}=3 \bmod 8$. But if all of the factors are $=1 \bmod 8$ then $($ working $\bmod 8)$ we have

$$
N=q_{1} q_{2} \cdots q_{\ell}=1 \cdot 1 \cdots 1=1,
$$

which contradicts part (a). It follows that there exists some prime factor $q_{i}=3 \bmod 8$.
(d): In summary, we have shown that there exists a prime number p such that $p \mid N$ (i.e., $N=0$ $\bmod p)$ and $p=3 \bmod 8$. I claim that this number cannot be in the list p_{1}, \ldots, p_{k}. Indeed, for any i we have

$$
N=p_{i}(\text { some integer })+2=2 \bmod p_{i} .
$$

But if $p=p_{i}$ then this contradicts the fact that $N=0 \bmod p$.
[Remark: My old professor M. Ram Murty showed ${ }^{3}$ that this type of "Euclidean proof" of infinitely many primes $=a \bmod b$ only works for $a^{2}=1 \bmod b$. So we are still very far away from Dirichlet's Theorem.]

[^1]
[^0]: ${ }^{1}$ We assume that $p \neq 3$.
 ${ }^{2}$ See David Cox, Primes of the form $x^{2}+n y^{2}$, page 14 .

[^1]: ${ }^{3}$ Primes in certain arithmetic progessions, 1988.

