Problem 1. Chinese Remainder Theorem. Find all integers $c \in \mathbb{Z}$ satisfying the following system of simultaneous congruences:

$$
\left\{\begin{aligned}
c & \equiv 3 \bmod 5 \\
c & \equiv 6 \bmod 9 \\
c & \equiv 8 \bmod 11
\end{aligned}\right.
$$

There are two ways to do this.
Two at a time. Recall that the general solution to $c \equiv a \bmod m$ and $c \equiv b \bmod n$ with $\operatorname{gcd}(m, n)=1$ is $c \equiv a n y+b m x \bmod m n$, where $x, y \in \mathbb{Z}$ are any integers satisfying $m x+n y=1$. First we consider $c \equiv 5 \bmod 5$ and $c \equiv 6 \bmod 9$. In this case we have $(a, b)=(3,6)$ and $(m, n)=(5,9)$. We observe that the integers $(x, y)=(2,-1)$ satisfy $m x+n y=1$. Therefore the general solution is

$$
c \equiv a n y+b m x=3 \cdot 9 \cdot(-1)+6 \cdot 5 \cdot 2 \equiv 33 \bmod 45
$$

Next we consider the two congruences $c \equiv 8 \bmod 11$ and $c \equiv 33 \bmod 45$. This time we have $(a, b)=(8,33)$ and $(m, n)=(11,45)$, and we observe that the integers $(x, y)=(-4,1)$ satisfy $m x+n y=1$. Therefore the general solution is

$$
c \equiv a n y+b m x=8 \cdot 45 \cdot 1+33 \cdot 11 \cdot(-4) \equiv-1092 \equiv 393 \bmod 495
$$

All at once. Alternatively, recall that for any integers satisfying $\operatorname{gcd}\left(m_{1}, m_{2}, m_{3}\right)=1$, there exist some integers $x_{1}, x_{2}, x_{3} \in \mathbb{Z}$ satisfying $x_{1} m_{2} m_{3}+m_{1} x_{2} m_{3}+m_{1} m_{2} x_{3}=1$. Then for any integers $a_{1}, a_{2}, a_{3} \in \mathbb{Z}$, the general solution to the congruences $c \equiv a_{i} \bmod m_{i}$ is given by

$$
c \equiv a_{1} x_{1} m_{2} m_{3}+a_{2} m_{1} x_{2} m_{3}+a_{3} m_{1} m_{2} x_{3} \quad \bmod m_{1} m_{2} m_{3} .
$$

In our case we have $\left(a_{1}, a_{2}, a_{3}\right)=(3,6,8)$ and $\left(m_{1}, m_{2}, m_{3}\right)=(5,9,11)$. Then by inspection ${ }^{11}$ we observe that the integers $\left(x_{1}, x_{2}, x_{3}\right)=(-1,1,1)$ satisfy the desired property:

$$
x_{1} m_{2} m_{3}+m_{1} x_{2} m_{3}+m_{1} m_{2} x_{3}=99 x_{1}+55 x_{2}+45 x_{3}=1 .
$$

Therefore the general solution is

$$
\begin{aligned}
c & \equiv a_{1} x_{1} m_{2} m_{3}+a_{2} m_{1} x_{2} m_{3}+a_{3} m_{1} m_{2} x_{3} \bmod m_{1} m_{2} m_{3} \\
& \equiv 3 \cdot 99 \cdot(-1)+6 \cdot 55 \cdot 1+8 \cdot 45 \cdot 1 \bmod 405 \\
& \equiv 393 \bmod 405
\end{aligned}
$$

Problem 2. Application of Bézout's Lemma. For any $a, b \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=1$, Bézout's Lemma tells us that $a x+b y=1$ for some $x, y \in \mathbb{Z}$.
(a) Prove the converse. That is, if $a x+b y=1$ for some $x, y \in \mathbb{Z}$, prove that $\operatorname{gcd}(a, b)=1$.
(b) Apply Bézout and part (a) to prove that

$$
\operatorname{gcd}(a b, c)=1 \quad \Longleftrightarrow \quad \operatorname{gcd}(a, c)=1 \quad \text { and } \quad \operatorname{gcd}(b, c)=1 .
$$

[^0](a): Let $a x+b y=1$ and $\operatorname{gcd}(a, b)=d \geqslant 1$. Since $d \mid a$ and $d \mid b$ we have $a=d a^{\prime}$ and $b=d b^{\prime}$ for some $a^{\prime}, b^{\prime} \in \mathbb{Z}$. But then we also have
$$
1=a x+b y=d a^{\prime} x+d b^{\prime} y=d\left(a^{\prime} x+b^{\prime} y\right)
$$
which since $d \geqslant 1$ implies that $d=1$.
(b): Suppose that $\operatorname{gcd}(a b, c)=1$, so Bézout's identity implies that $a b x+c y=1$ for some integers $x, y \in \mathbb{Z}$. But then part (a) implies $\operatorname{gcd}(a, c)=1$ because $a(b x)+c(y)=1$ and $\operatorname{gcd}(b, c)=1$ because $b(a x)+c(y)=1$. Conversely, suppose that $\operatorname{gcd}(a, c)=1$ and $\operatorname{gcd}(b, c)=$ 1 , so Bézout's identity implies that $a x+c y=1$ and $b x^{\prime}+c y^{\prime}=1$ for some integers $x, y, x^{\prime}, y^{\prime} \in \mathbb{Z}$. But then we have
\[

$$
\begin{aligned}
(a x+c y)\left(b x^{\prime}+c y^{\prime}\right) & =1 \\
a b x x^{\prime}+a x c y^{\prime}+c y b x^{\prime}+c y c y^{\prime} & =1 \\
a b\left(x x^{\prime}\right)+c\left(a x y^{\prime}+y b x^{\prime}+y c y^{\prime}\right) & =1,
\end{aligned}
$$
\]

hence from part (a) we conclude that $\operatorname{gcd}(a b, c)=1$.

Problem 3. GCD and LCM. Let $2=p_{1}<p_{2}<p_{3}<\cdots$ be the sequence of all primes. Then every positive integer $a \geqslant 2$ can be expressed in the form

$$
a=p_{1}^{a_{i}} p_{2}^{a_{2}} p_{3}^{a_{3}} \cdots,
$$

and is uniquely determined by the sequence of exponents $a_{1}, a_{2}, a_{3}, \ldots$.
(a) Prove that $a \mid b$ if and only if $a_{i} \leqslant b_{i}$ for all i.
(b) Prove that $\operatorname{gcd}(a, b)_{i}=\min \left(a_{i}, b_{i}\right)$ for all i.
(c) Prove that $\operatorname{lcm}(a, b)_{i}=\max \left(a_{i}, b_{i}\right)$ for all i.
(d) Combine (b) and (c) to prove that $\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=a b$. [Hint: $(a b)_{i}=a_{i}+b_{i}$.]
(a): Suppose that $a_{i} \leqslant b_{i}$ for all i, which means that $b_{i}=a_{i}+k_{i}$ for some non-negative integers $k_{i} \geqslant 0$. It follows that

$$
b=p_{1}^{a_{1}+k_{1}} p^{a_{2}+k_{2}} p_{3}^{a_{3}+k_{3}} \cdots=\left(p_{1}^{a_{1}} p_{2}^{a_{2}} p_{3}^{a_{3}} \cdots\right)\left(p_{1}^{k_{1}} p_{2}^{k_{2}} p_{3}^{k_{3}} \cdots\right)=a\left(p_{1}^{k_{1}} p_{2}^{k_{2}} p_{3}^{k_{3}} \cdots\right),
$$

and hence $a \mid b$. Conversely, suppose that $a \mid b$ and consider the prime p_{i}. Then since $p_{i}^{a_{i}}$ divides a, it also divides b. But we know that $b=p_{i}^{b_{i}} m$ for some m satisfying $\operatorname{gcd}\left(m, p_{i}\right)=1$ and hence $\operatorname{gcd}\left(m, p_{i}^{a_{i}}\right)=1$. Thus we conclude from Euclid's Lemma that $p_{i}^{a_{i}} \mid p_{i}^{b_{i}}$, and hence $a_{i} \leqslant b_{i}$.
(b) and (c): For all integers $d \geqslant 1$ and for all primes p_{i} we have

$$
\begin{align*}
d_{i} \leqslant \operatorname{gcd}(a, b)_{i} & \Leftrightarrow d \mid \operatorname{gcd}(a, b) & & \text { part (a) } \tag{a}\\
& \Leftrightarrow d \mid a \text { and } d \mid b & & \\
& \Leftrightarrow d_{i} \leqslant a_{i} \text { and } d_{i} \leqslant b_{i} & & \text { part (a) } \\
& \Leftrightarrow d_{i} \leqslant \min \left(a_{i}, b_{i}\right), & &
\end{align*}
$$

which implies that $\operatorname{gcd}(a, b)_{i}=\min \left(a_{i}, b_{i}\right)$. Similarly, for all integers m we have

$$
\begin{align*}
\operatorname{lcm}(a, b)_{i} \leqslant m_{i} & \Leftrightarrow \operatorname{lcm}(a, b) \mid m & & \text { part (a) } \tag{a}\\
& \Leftrightarrow a \mid m \text { and } b \mid m & & \text { part (a) } \\
& \Leftrightarrow a_{i} \leqslant m_{i} \text { and } b_{i} \leqslant m_{i} & & \\
& \Leftrightarrow \max \left(a_{i}, b_{i}\right) \leqslant m_{i}, & &
\end{align*}
$$

which implies that $\operatorname{lcm}(a, b)_{i}=\max \left(a_{i}, b_{i}\right)$.
(d): For all integers $m, n \in \mathbb{Z}$ and for all primes p_{i} we note that $(m n)_{i}=m_{i}+n_{i}$. Furthermore, if $m_{i}=n_{i}$ for all primes p_{i} then we note that $m=n$. Thus we conclude from (b) and (c) that

$$
\begin{array}{rlr}
{[\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)]_{i}} & =\operatorname{gcd}(a, b)_{i}+\operatorname{lcm}(a, b)_{i} \\
& =\min \left(a_{i}, b_{i}\right)+\max \left(a_{i}, b_{i}\right) \quad \\
& =a_{i}+b_{i} \\
& =(a b)_{i}, & \text { think about it }
\end{array}
$$

and hence $\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=a b$.

Problem 4. RSA Cryptosystem. The following message has been encrypted using the RSA cryptosystem with public key $(n, e)=(55,23)$:

$$
[17,1,33,15,1,13,20,20,9,39,26,2,14,49,13,8,2,15,1,11]
$$

Decrypt the message. [Hint $A=1, B=2, C=3$, etc.]
Each message is represented by a number $0 \leqslant m<55$. (In this case, I only used numbers 1 through 26 , corresponding to letters of the alphabet.) To encrypt the message I computed $c \equiv m^{e} \bmod n$. To decrypt the message you should compute $m \equiv c^{d} \bmod n$, where d is the decryption exponent.

Recall that the decryption exponent is defined by $d \equiv e^{-1} \bmod (p-1)(q-1)$, where $n=p q$. To find d, we first factor $n=55$ to obtain the primes $p=5$ and $q=11$. Now we need to find $d \equiv 23^{-1} \bmod 40$, and we do this using the Euclidean algorithm. Each row corresponds to a true equation $23 x+40 y=z$:

x	y	z
0	1	40
1	0	23
-1	1	17
2	-1	6
-5	3	5
7	-4	1

We conclude that $23 \cdot 7 \equiv 40 \cdot 4+1 \equiv 1 \bmod 40$, and hence $d=7$. Finally, we raise each encrypted message c to the power of $7 \bmod 40$. The resulting numbers are

$$
[8,1,22,5,1,7,15,15,4,19,16,18,9,14,7,2,18,5,1,11],
$$

which translate to the following letters:

$$
[h, a, v, e, a, g, o, o, d, s, p, r, i, n, g, b, r, e, a, k] .
$$

[^0]: ${ }^{1}$ It inspection didn't work we would use the matrix Euclidean algorithm.

