
MTH 505: Number Theory Spring 2020
Homework 3 Drew Armstrong

Problem 1. Chinese Remainder Theorem. Find all integers c P Z satisfying the following
system of simultaneous congruences:
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c ” 3 mod 5,
c ” 6 mod 9,
c ” 8 mod 11.

There are two ways to do this.

Two at a time. Recall that the general solution to c ” a mod m and c ” b mod n
with gcdpm,nq “ 1 is c ” any ` bmx mod mn, where x, y P Z are any integers satisfying
mx ` ny “ 1. First we consider c ” 5 mod 5 and c ” 6 mod 9. In this case we have
pa, bq “ p3, 6q and pm,nq “ p5, 9q. We observe that the integers px, yq “ p2,´1q satisfy
mx` ny “ 1. Therefore the general solution is

c ” any ` bmx “ 3 ¨ 9 ¨ p´1q ` 6 ¨ 5 ¨ 2 ” 33 mod 45.

Next we consider the two congruences c ” 8 mod 11 and c ” 33 mod 45. This time we have
pa, bq “ p8, 33q and pm,nq “ p11, 45q, and we observe that the integers px, yq “ p´4, 1q satisfy
mx` ny “ 1. Therefore the general solution is

c ” any ` bmx “ 8 ¨ 45 ¨ 1` 33 ¨ 11 ¨ p´4q ” ´1092 ” 393 mod 495.

All at once. Alternatively, recall that for any integers satisfying gcdpm1,m2,m3q “ 1, there
exist some integers x1, x2, x3 P Z satisfying x1m2m3 `m1x2m3 `m1m2x3 “ 1. Then for any
integers a1, a2, a3 P Z, the general solution to the congruences c ” ai mod mi is given by

c ” a1x1m2m3 ` a2m1x2m3 ` a3m1m2x3 mod m1m2m3.

In our case we have pa1, a2, a3q “ p3, 6, 8q and pm1,m2,m3q “ p5, 9, 11q. Then by inspection1

we observe that the integers px1, x2, x3q “ p´1, 1, 1q satisfy the desired property:

x1m2m3 `m1x2m3 `m1m2x3 “ 99x1 ` 55x2 ` 45x3 “ 1.

Therefore the general solution is

c ” a1x1m2m3 ` a2m1x2m3 ` a3m1m2x3 mod m1m2m3

” 3 ¨ 99 ¨ p´1q ` 6 ¨ 55 ¨ 1` 8 ¨ 45 ¨ 1 mod 405

” 393 mod 405.

Problem 2. Application of Bézout’s Lemma. For any a, b P Z with gcdpa, bq “ 1,
Bézout’s Lemma tells us that ax` by “ 1 for some x, y P Z.

(a) Prove the converse. That is, if ax` by “ 1 for some x, y P Z, prove that gcdpa, bq “ 1.
(b) Apply Bézout and part (a) to prove that

gcdpab, cq “ 1 ðñ gcdpa, cq “ 1 and gcdpb, cq “ 1.

1It inspection didn’t work we would use the matrix Euclidean algorithm.



(a): Let ax` by “ 1 and gcdpa, bq “ d ě 1. Since d|a and d|b we have a “ da1 and b “ db1 for
some a1, b1 P Z. But then we also have

1 “ ax` by “ da1x` db1y “ dpa1x` b1yq,

which since d ě 1 implies that d “ 1.

(b): Suppose that gcdpab, cq “ 1, so Bézout’s identity implies that abx ` cy “ 1 for some
integers x, y P Z. But then part (a) implies gcdpa, cq “ 1 because apbxq ` cpyq “ 1 and
gcdpb, cq “ 1 because bpaxq ` cpyq “ 1. Conversely, suppose that gcdpa, cq “ 1 and gcdpb, cq “
1, so Bézout’s identity implies that ax`cy “ 1 and bx1`cy1 “ 1 for some integers x, y, x1, y1 P Z.
But then we have

pax` cyqpbx1 ` cy1q “ 1

abxx1 ` axcy1 ` cybx1 ` cycy1 “ 1

abpxx1q ` cpaxy1 ` ybx1 ` ycy1q “ 1,

hence from part (a) we conclude that gcdpab, cq “ 1.

Problem 3. GCD and LCM. Let 2 “ p1 ă p2 ă p3 ă ¨ ¨ ¨ be the sequence of all primes.
Then every positive integer a ě 2 can be expressed in the form

a “ pai1 pa22 pa33 ¨ ¨ ¨ ,

and is uniquely determined by the sequence of exponents a1, a2, a3, . . ..

(a) Prove that a|b if and only if ai ď bi for all i.
(b) Prove that gcdpa, bqi “ minpai, biq for all i.
(c) Prove that lcmpa, bqi “ maxpai, biq for all i.
(d) Combine (b) and (c) to prove that gcdpa, bq ¨ lcmpa, bq “ ab. [Hint: pabqi “ ai ` bi.]

(a): Suppose that ai ď bi for all i, which means that bi “ ai`ki for some non-negative integers
ki ě 0. It follows that

b “ pa1`k11 pa2`k2pa3`k33 ¨ ¨ ¨ “ ppa11 pa22 pa33 ¨ ¨ ¨ qpp
k1
1 pk22 pk33 ¨ ¨ ¨ q “ appk11 pk22 pk33 ¨ ¨ ¨ q,

and hence a|b. Conversely, suppose that a|b and consider the prime pi. Then since paii divides

a, it also divides b. But we know that b “ pbii m for some m satisfying gcdpm, piq “ 1 and hence

gcdpm, paii q “ 1. Thus we conclude from Euclid’s Lemma that paii |p
bi
i , and hence ai ď bi.

(b) and (c): For all integers d ě 1 and for all primes pi we have

di ď gcdpa, bqi ô d| gcdpa, bq part (a)

ô d|a and d|b

ô di ď ai and di ď bi part (a)

ô di ď minpai, biq,

which implies that gcdpa, bqi “ minpai, biq. Similarly, for all integers m we have

lcmpa, bqi ď mi ô lcmpa, bq|m part (a)

ô a|m and b|m

ô ai ď mi and bi ď mi part (a)

ô maxpai, biq ď mi,

which implies that lcmpa, bqi “ maxpai, biq.



(d): For all integers m,n P Z and for all primes pi we note that pmnqi “ mi`ni. Furthermore,
if mi “ ni for all primes pi then we note that m “ n. Thus we conclude from (b) and (c) that

rgcdpa, bq ¨ lcmpa, bqsi “ gcdpa, bqi ` lcmpa, bqi

“ minpai, biq `maxpai, biq

“ ai ` bi think about it

“ pabqi,

and hence gcdpa, bq ¨ lcmpa, bq “ ab.

Problem 4. RSA Cryptosystem. The following message has been encrypted using the
RSA cryptosystem with public key pn, eq “ p55, 23q:

r17, 1, 33, 15, 1, 13, 20, 20, 9, 39, 26, 2, 14, 49, 13, 8, 2, 15, 1, 11s

Decrypt the message. [Hint A “ 1, B “ 2, C “ 3, etc.]

Each message is represented by a number 0 ď m ă 55. (In this case, I only used numbers
1 through 26, corresponding to letters of the alphabet.) To encrypt the message I computed
c ” me mod n. To decrypt the message you should compute m ” cd mod n, where d is the
decryption exponent.

Recall that the decryption exponent is defined by d ” e´1 mod pp´ 1qpq ´ 1q, where n “ pq.
To find d, we first factor n “ 55 to obtain the primes p “ 5 and q “ 11. Now we need to find
d ” 23´1 mod 40, and we do this using the Euclidean algorithm. Each row corresponds to a
true equation 23x` 40y “ z:

x y z
0 1 40
1 0 23

´1 1 17
2 ´1 6
´5 3 5

7 ´4 1

We conclude that 23 ¨ 7 ” 40 ¨ 4 ` 1 ” 1 mod 40, and hence d “ 7. Finally, we raise each
encrypted message c to the power of 7 mod 40. The resulting numbers are

r8, 1, 22, 5, 1, 7, 15, 15, 4, 19, 16, 18, 9, 14, 7, 2, 18, 5, 1, 11s,

which translate to the following letters:

rh, a, v, e, a, g, o, o, d, s, p, r, i, n, g, b, r, e, a, ks.


