MTH 505: Number Theory Spring 2020
Homework 3 Drew Armstrong

Problem 1. Chinese Remainder Theorem. Find all integers ¢ € Z satisfying the following
system of simultaneous congruences:

¢ =3 mod 5,
¢ =6 mod9,
¢ =8 mod 11.

There are two ways to do this.

Two at a time. Recall that the general solution to ¢ = a mod m and ¢ = b mod n
with ged(m,n) = 1 is ¢ = any + bmz mod mn, where x,y € Z are any integers satisfying
mx + ny = 1. First we consider ¢ = 5 mod 5 and ¢ = 6 mod 9. In this case we have
(a,b) = (3,6) and (m,n) = (5,9). We observe that the integers (x,y) = (2,—1) satisfy
max + ny = 1. Therefore the general solution is

c=any+bmzr=3-9-(—1)+6-5-2=33 mod 45.

Next we consider the two congruences ¢ = 8 mod 11 and ¢ = 33 mod 45. This time we have
(a,b) = (8,33) and (m,n) = (11,45), and we observe that the integers (z,y) = (—4, 1) satisfy
max + ny = 1. Therefore the general solution is

c=any +bmxr =8-45-1+33-11-(—4) = —1092 = 393 mod 495.

All at once. Alternatively, recall that for any integers satisfying ged(mq, ma, m3) = 1, there
exist some integers x1, X2, x3 € Z satisfying x1moms + mixoms + mymexs = 1. Then for any
integers a1, as, as € Z, the general solution to the congruences ¢ = a; mod m; is given by

c = airimoms + aomixoms + agmimeoxrs mod mimems.

In our case we have (a1,a2,a3) = (3,6,8) and (m1,mg, m3) = (5,9,11). Then by inspectiorﬂ
we observe that the integers (x1,x9,x3) = (—1,1, 1) satisfy the desired property:

T1moms + mixoms + mimeoxs = 9921 + 55x9 + 4523 = 1.
Therefore the general solution is

c = a1x1mamsg + aomiramsg + agmimexg mod mimems
=3-99-(-1)+6-55-1+8-45-1 mod 405
= 393 mod 405.

Problem 2. Application of Bézout’s Lemma. For any a,b € Z with ged(a,b) = 1,
Bézout’s Lemma tells us that ax + by = 1 for some z,y € Z.

(a) Prove the converse. That is, if ax + by = 1 for some x,y € Z, prove that ged(a,b) = 1.
(b) Apply Bézout and part (a) to prove that

ged(ab,c) =1 <= ged(a,e) =1 and  ged(b,c) = 1.

¢ inspection didn’t work we would use the matrix Euclidean algorithm.



(a): Let ax + by = 1 and ged(a,b) = d = 1. Since d|a and d|b we have a = da’ and b = db’ for
some a’,b’ € Z. But then we also have
1=azx+by=ddx+dy=ddz+by),

which since d > 1 implies that d = 1.

(b): Suppose that ged(ab,c) = 1, so Bézout’s identity implies that abxz + cy = 1 for some
integers z,y € Z. But then part (a) implies ged(a,c) = 1 because a(bx) + c¢(y) = 1 and
ged(b, ¢) = 1 because b(az) + c¢(y) = 1. Conversely, suppose that ged(a,c) = 1 and ged(b, ¢) =
1, so Bézout’s identity implies that az+cy = 1 and bz’ +cy’ = 1 for some integers z,y, 2’, vy’ € Z.
But then we have

(az + cy) (b’ +cy') =1
abzx’ + axcy + cybx’ + cycy =1
ab(zz’) + clazy’ + yba' +yey') = 1,

hence from part (a) we conclude that ged(ab,c) = 1.

Problem 3. GCD and LCM. Let 2 = p1 < py < p3 < --- be the sequence of all primes.
Then every positive integer a > 2 can be expressed in the form

az, a3

a:p?iPQ p3 cee
and is uniquely determined by the sequence of exponents a1, ao,as, .. ..

(a) Prove that a|b if and only if a; < b; for all i.

(b) Prove that ged(a,b); = min(a;, b;) for all i.

(¢) Prove that lem(a, b); = max(a;, b;) for all 3.

(d) Combine (b) and (c) to prove that ged(a,b) - lem(a, b) = ab. [Hint: (ab); = a; + b;.]

a): Suppose that a; < b; for all 4, which means that b; = a; +k; for some non-negative integers
k; = 0. It follows that

a1+k1 as+ka as+ks | _ ( ai, a2, a3

e e e O PP pE ) (P s o) = a(py'p5ips? - --),
and hence alb. Conversely, suppose that a|b and consider the prime p;. Then since p{* divides
a, it also divides b. But we know that b = p?im for some m satisfying ged(m, p;) = 1 and hence
ged(m, pi") = 1. Thus we conclude from Euclid’s Lemma that p} |pfi, and hence a; < b;.

(b) and (c): For all integers d > 1 and for all primes p; we have

d; < ged(a,b); < d| ged(a,b) part (a)
< d|a and d|b
< d; <a;and d; < b; part (a)
< d; < min(a;, b;),

which implies that ged(a,b); = min(a;, b;). Similarly, for all integers m we have
lem(a,b); < m; < lem(a, b)|m part (a)
< a|lm and blm
< a; <m; and b; < my part (a)
< max(a;, b;) < my,

which implies that lem(a, b); = max(a;, b;).



(d): For all integers m,n € Z and for all primes p; we note that (mn); = m; +n;. Furthermore,
if m; = n; for all primes p; then we note that m = n. Thus we conclude from (b) and (c) that

[ged(a, b) - lem(a, b)), = ged(a, b); + lem(a, b);
= min(a;, b;) + max(a;, b;)
=a; + b; think about it
= (ab);,
and hence ged(a, b) - lem(a, b) = ab.

Problem 4. RSA Cryptosystem. The following message has been encrypted using the
RSA cryptosystem with public key (n,e) = (55, 23):

[17,1,33,15,1,13,20, 20,9, 39, 26, 2, 14,49, 13,8, 2,15, 1, 11]
Decrypt the message. [Hint A =1, B =2, C' = 3, etc.]

Each message is represented by a number 0 < m < 55. (In this case, I only used numbers
1 through 26, corresponding to letters of the alphabet.) To encrypt the message I computed
¢ = m® mod n. To decrypt the message you should compute m = ¢? mod n, where d is the
decryption exponent.

Recall that the decryption exponent is defined by d = e~! mod (p — 1)(q — 1), where n = pq.
To find d, we first factor n = 55 to obtain the primes p = 5 and ¢ = 11. Now we need to find
d = 237! mod 40, and we do this using the Euclidean algorithm. Each row corresponds to a
true equation 23z + 40y = z:

T y| z
0 1140
1 0123

—1 1|17
2/ —-11] 6

-5 31 5
T4 1

We conclude that 23 -7 =40-4 4+ 1 = 1 mod 40, and hence d = 7. Finally, we raise each
encrypted message ¢ to the power of 7 mod 40. The resulting numbers are

[8,1,22,5,1,7,15,15,4,19,16,18,9,14,7,2,18,5,1, 11],
which translate to the following letters:

[h7avv767a7970707d7 S7p7r7i7n7g7b7r7e7a7k]'



