MTH 505: Number Theory Spring 2020
Homework 2 Drew Armstrong

Problem 1. Smith Normal Form. Find unimodular matrices U and V satisfying

7 5 3 1 00
V(6 4 2>U_<o 2 0)'
Use your answer to solve the following system of Diophantine equations:

Tx1y + bxry + 3x3 = 1,
6x1 + 4xo + 2x3 = 0.

There are infinitely many such matrices U and V', depending on the particular sequence of
row and column operations. Here is one such sequence:

75 310 35 7|10 2 4 6|0 1
6 4 2(0 1 2 4 6/0 1 35 7|10
1 0 0 - 0 0 1 ~ 0 0 1
010 01 0 010
00 1 100 100
2.0 00 1 2 0 010 1 1 -1 —2]1 -1
3 -1 —2|1 0 1 -1 —2|1 -1 2 0 0|0 1
~ 0 0 1 ~ 0 0 1 ~ 0 0 1
0 1 0 0 1 0 0 1 0
1 -2 -3 1 -2 -3 1 -2 -3
1 0 0]1 -1 1 0 0]1 -1 1 0 0]1 -1
2 2 4]0 1 0 2 4|-2 3 0 2 0/|-2 3
~ 0 0 1 ~ 0 0 1 ~ 0 0 1
0 1 0 0 1 0 0 1 -2
1 -1 -1 1 -1 -1 1 -1 1

From this we conclude that
0 O 1
1 -1 7 5 3 1 00
VAU:<—2 3><6 4 2) (f _11 _12 :<0 2 0>:D'

Now we want to find all integer vectors x such that Ax = b, where b = (1,0). By setting
y = U~ 'x, this is equalent to

Ax =D

VDU 'x=Db
DU 'x=Vb
Dy =Vb

(2 (=) (% ) 0)
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210 -2/
The complete integer solution is (y1,y2,y3) = (1, —1,k) for all k € Z, and hence

x=Uy
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T9 —1 + k for all k € Z.
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Problem 2. Modular Arithmetic is Well-Defined. For all integers a,b,a’,b’ € Z with
a=d and b =1 mod n, show that a + b= d' + b and ab = o't/ mod n.

Proof. Assume that we have ¢ = o’ and b = b mod n. By definition this means that
a—a' =mnk and b — b = nf for some integers k, ¢ € Z. But then we have

(a+b)—(a +b)=(a—d)+ (b—="b)=nk+nl =n(k+1),
which implies that a + b = o’ + ¥’ mod n and
ab—a't' = (a’ + nk)(b' + nl) — a't’
= 't + b'nk + a'nl + n*kl — a't/
=n(b'k + d'l + nkl),
which implies that ab = a’b' mod n. O

Problem 3. Irrational Roots. Let d,n € Z be positive integers and let ¥/d € R denote the
positive real nth root. We will show that {/d ¢ Z implies {/d ¢ Q.

(a) Assume that {/d ¢ Z and for each prime p let v,(d) € N denote the multiplicity of p in
the factorization of d. Prove that there exists some prime p with v,(d) # 0 mod n.

(b) Now assume for contradiction that {/d € Q. This means we can write (a/b)" =
and hence a™ = db", for some integers a,b € Z with b # 0. Prove that nv,(a)
vp(d) + nup(b) and explain why this contradicts part (a).

d,

(a): If not, then for each prime p; we can write v,,(d) = nk; for some k; € Z. It follows that

d= pl’pl (d)pVPQ (d)pgp3 (d) .

nki, nka, nks

=P1 Py "Ps3
n
= <p11p22p33 e ) ,

which contradicts the fact that V/d ¢ 7.
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(b) Assume that (a/b)" = d for some integers a, b € Z with b # 0. Then raising both sides to the
power of n and multiplying by b™ gives a’ = db"™. From part (a) we know there exists a prime
p such that n { v,(d). But recall that the function v, : Z — N satisfies v,(zy) = vp(x) + v, (y).
Thus we obtain the following contradiction:

a” = db"
vp(a™) = vp(db™)
np(a) = vp(d) + nup(b)
n(vp(a) — vp(b)) = vp(d).

Problem 4 Infinitely Many Primes = 3 Mod 4. We will show that there are infinitely
many prime numbers in the sequence {3 + 4k : k € Z, k > 0}.

(a) For any positiver integer n with n = 3 mod 4, show that n has a prime factor p|n
satisfying p = 3 mod 4. [Hint: If not then every prime factor of n is = 1 mod 4.]

(b) Assume for contradiction that there are finitely many primes = 3 mod 4 and call them
3<p1<p2<- <pg

Now consider the number n = 4p1ps---pr + 3. From part (a) there exists a prime
factor p|n with p = 3 mod 4. Show that this prime is not in the list.

(a): Let n =3 mod 4. We can express n = q; - - - qx as a product of primes, and since n is odd
we know that the prime 2 does not occur. Thus for each ¢ we have ¢; = 1 or ¢; = 3 mod 4. If
¢; = 1 mod 4 for all ¢ then we obtain a contradiction:

n=qq---qg=1-1---1=1 mod 4.

Therefore there must exist some 4 such that ¢; = 3 mod 4.

(b): Assume for contradiction that 3 < p; < ps < --- < pi are the only primes = 3 mod 4
and define the number n = 3 + 4py---pr. Since n = 3 + 0 = 3 mod 4 we know from part
(a) that there exists some prime p|n with p = 3 mod 4. But I claim that this p is not in
the list 3, p1,...,pr. Indeed, if p = 3 then we see that 3 divides n — 3 = 4py - - - pg, which by
Euclid’s Lemma implies that 3|4 or 3|p; for some ¢. But this is impossible because p; # 3 and
p; is prime. And if p = p; for some i then we see that p; divides n — 4py - - - pr = 3, which is
impossible because 3 < p;. Therefore our list was incomplete. O

Problem 5. RSA Cryptosystem. We will fill in a gap from our in-class discussion of RSA.

(a) For all integers p, q,a € Z with ged(p, ¢) = 1 show that pla and ¢|a imply pg|a. [Hint:
By Bézout we can write px + qy = 1 for some z,y € Z. Now multiply both sides by a.]

(b) For any integers m, k, p,q € Z with p and ¢ prime, show that
plm(m®@@Dk _ 1) and  glm(m?@DF _ 1),

[Hint: If p { m then Euler’s Totient Theorem says that m®®) = 1 mod p. Similarly, if
¢t m then we have m?@ = 1 mod ¢.]



(c) If p and q are distinct primes, combine parts (a) and (b) to show that
m?PIDF+1 = 1y mod pg

for all integers m, k € Z.

(a): Let p,q,a € Z with ged(p, q) = 1. Then from Bézout’s Identity we can write px + qy = 1
for some z,y € Z. Now suppose that we have p|a and ¢|a for some a € Z. Say a = pk and
a = gf. It follows that

pr+qy=1
a(pr + qy) = a
apr + aqy = a

qlpx + pkqy = a
pq(lx + ky) = a,

and hence pq|a.

(b): Let m, k,p,q € Z with p,q prime. If p{m then Euler’s Totient Theorem implies that
m®® =1
(m®P)yolak = o)k

m?@Dk = 1 mod pg.

This implies that pq (and also p) divides m?®¢(@* 1 and hence p divides m(m?®®@*@k _ 1),
But if p|m then we still have p|m(m®®?@k _ 1) The same result for ¢ follows by symmetry.

(c): Finally, if p # ¢ then we have ged(p, ¢) = 1 and it follows from part (a) that
pq|m(m@ @k _ 1y — pe@e@k+1 _

In other words, we have m?®?@k+1 =y mod pq. This formula is the basis for decryption in
the RSA cryptosystem.

Problem 6. Infinitely Many Primes = 1 Mod 4. We will show that there are infinitely
many prime numbers in the sequence {1 + 4k : k € Z, k > 0}.

(a) Assume for contradiction that there are only finitely many primes in this sequence; call
them p1,p9,...,pr and define the integers

z=2pipe---pe and n=z>+1.
Prove that n =1 mod 4 and n = 1 mod p; for all i.

(b) Let p|n be any prime divisor of n. Show that x, 2% 2% # 1 and 2* = 1 mod p. It follows
from Euler’s Totient Theorem that 4 divides ¢(p) = p—1 and hence p = 1 mod 4. But
then we must have p = p; for some i. Show that this leads to a contradiction.

(a): Assume for contradiction that pi,...,py are the only primes = 1 mod 4, and define

T =2p1- - Pk,

n=z>+1.
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Since 4|72 = n — 1 we have n = 1 mod 4 and since p;|z?> = n — 1 we have n = 1 mod p; for all
indices .

(b): We know that n has some prime divisor p|n. If we can show that
(1) pis not in the list p1, ..., g,
(2) p=1mod 4,

then we will obtain the desired contradiction. To show (1), suppose that p = p; for some
i. Then we obtain the contradiction p;|(n — 2?) = 1. To show (2), it is enough to prove
that  #£ 0, z,2%,22 # 1 and z* = 1 mod 4. In other words, it is enough to show that
4 = ord,(x) is the multiplicative order of  mod p. Then Euler’s Totient Theorem will imply
that 4 = ord,(x)|¢(p) = p — 1 and hence p =1 mod 4.

To do this we first observe that pln = 22 + 1 = 2 — (=1). This implies that 22> = —1 and
hence 2% = (22)2 = (~1)2 = 1 mod p. Then since p|n and n is odd we know that p # 2,
which implies that x = —1 £ 1 mod p. It follows that x # 0 and = # 1 mod 4 since otherwise
squaring both sides would give the contradictions z?> = 0 and 2> = 1 mod 4. Finally, we
observe that 2 = 1 mod 4 is impossible since multiplying by = would give the contradiction
z=z%*=1 mod 4. 0O

Discussion: The proof given here can be generalized to show that there are infinitely many
primes = 1 mod n for any integer n > 2. The general idea is to replace the expression z? + 1
by a certain polynomial ®,(x), called the cyclotomic polynomial. Tt is also true that for any
ged(a,b) = 1 there exist infinitely many primes = a mod b. This is a famous theorem called
Dirichlet’s Theorem and it is extremely difficult to prove.



