Problem 1. Smith Normal Form. Find unimodular matrices U and V satisfying

$$V\begin{pmatrix} 7 & 5 & 3\\ 6 & 4 & 2 \end{pmatrix}U = \begin{pmatrix} 1 & 0 & 0\\ 0 & 2 & 0 \end{pmatrix}.$$

Use your answer to solve the following system of Diophantine equations:

There are infinitely many such matrices U and V, depending on the particular sequence of row and column operations. Here is one such sequence:

	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\sim \rightarrow$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\sim \rightarrow$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\sim \rightarrow$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\sim \rightarrow$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\sim \rightarrow$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
\rightsquigarrow	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\sim \rightarrow$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\sim \rightarrow$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

From this we conclude that

$$VAU = \begin{pmatrix} 1 & -1 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} 7 & 5 & 3 \\ 6 & 4 & 2 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & -2 \\ 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix} = D.$$

Now we want to find all integer vectors \mathbf{x} such that $A\mathbf{x} = \mathbf{b}$, where $\mathbf{b} = (1,0)$. By setting $\mathbf{y} = U^{-1}\mathbf{x}$, this is equalent to

$$A\mathbf{x} = \mathbf{b}$$

$$V^{-1}DU^{-1}\mathbf{x} = \mathbf{b}$$

$$DU^{-1}\mathbf{x} = V\mathbf{b}$$

$$D\mathbf{y} = V\mathbf{b}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$1$$

$$\begin{pmatrix} y_1\\2y_2 \end{pmatrix} = \begin{pmatrix} 1\\-2 \end{pmatrix}.$$

The complete integer solution is $(y_1, y_2, y_3) = (1, -1, k)$ for all $k \in \mathbb{Z}$, and hence

ττ

$$\mathbf{x} = U\mathbf{y}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & -2 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ k \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 1 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} - 1 \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} + k \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix} + k \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \quad \text{for all } k \in \mathbb{Z}.$$

Problem 2. Modular Arithmetic is Well-Defined. For all integers $a, b, a', b' \in \mathbb{Z}$ with $a \equiv a'$ and $b \equiv b' \mod n$, show that $a + b \equiv a' + b$ and $ab \equiv a'b' \mod n$.

Proof. Assume that we have $a \equiv a'$ and $b \equiv b' \mod n$. By definition this means that a - a' = nk and $b - b' = n\ell$ for some integers $k, \ell \in \mathbb{Z}$. But then we have

$$(a+b) - (a'+b') = (a-a') + (b-b') = nk + n\ell = n(k+\ell),$$

which implies that $a + b \equiv a' + b' \mod n$ and

$$\begin{aligned} ab - a'b' &= (a' + nk)(b' + n\ell) - a'b' \\ &= a'b' + b'nk + a'n\ell + n^2k\ell - a'b' \\ &= n(b'k + a'\ell + nk\ell), \end{aligned}$$

which implies that $ab \equiv a'b' \mod n$.

Problem 3. Irrational Roots. Let $d, n \in \mathbb{Z}$ be positive integers and let $\sqrt[n]{d} \in \mathbb{R}$ denote the positive real *n*th root. We will show that $\sqrt[n]{d} \notin \mathbb{Z}$ implies $\sqrt[n]{d} \notin \mathbb{Q}$.

(a) Assume that $\sqrt[n]{d} \notin \mathbb{Z}$ and for each prime p let $\nu_p(d) \in \mathbb{N}$ denote the multiplicity of p in the factorization of d. Prove that there exists some prime p with $\nu_p(d) \neq 0 \mod n$.

- (b) Now assume for contradiction that $\sqrt[n]{d} \in \mathbb{Q}$. This means we can write $(a/b)^n = d$, and hence $a^n = db^n$, for some integers $a, b \in \mathbb{Z}$ with $b \neq 0$. Prove that $n\nu_p(a) = \nu_p(d) + n\nu_p(b)$ and explain why this contradicts part (a).
- (a): If not, then for each prime p_i we can write $\nu_{p_i}(d) = nk_i$ for some $k_i \in \mathbb{Z}$. It follows that

$$d = p_1^{\nu_{p_1}(d)} p_2^{\nu_{p_2}(d)} p_3^{\nu_{p_3}(d)} \cdots$$

= $p_1^{nk_1} p_2^{nk_2} p_3^{nk_3} \cdots$
= $\left(p_1^{k_1} p_2^{k_2} p_3^{k_3} \cdots \right)^n$,

which contradicts the fact that $\sqrt[n]{d} \notin \mathbb{Z}$.

power of n and multiplying by b^n gives $a^n = db^n$. From part (a) we know there exists a prime p such that $n \nmid \nu_p(d)$. But recall that the function $\nu_p : \mathbb{Z} \to \mathbb{N}$ satisfies $\nu_p(xy) = \nu_p(x) + \nu_p(y)$. Thus we obtain the following contradiction:

$$a^{n} = db^{n}$$
$$\nu_{p}(a^{n}) = \nu_{p}(db^{n})$$
$$n\nu_{p}(a) = \nu_{p}(d) + n\nu_{p}(b)$$
$$n(\nu_{p}(a) - \nu_{p}(b)) = \nu_{p}(d).$$

Problem 4 Infinitely Many Primes \equiv **3 Mod 4.** We will show that there are infinitely many prime numbers in the sequence $\{3 + 4k : k \in \mathbb{Z}, k \ge 0\}$.

- (a) For any positiver integer n with $n \equiv 3 \mod 4$, show that n has a prime factor p|n satisfying $p \equiv 3 \mod 4$. [Hint: If not then every prime factor of n is $\equiv 1 \mod 4$.]
- (b) Assume for contradiction that there are finitely many primes $\equiv 3 \mod 4$ and call them

$$3 < p_1 < p_2 < \cdots < p_k.$$

Now consider the number $n = 4p_1p_2\cdots p_k + 3$. From part (a) there exists a prime factor p|n with $p \equiv 3 \mod 4$. Show that this prime is not in the list.

(a): Let $n \equiv 3 \mod 4$. We can express $n = q_1 \cdots q_k$ as a product of primes, and since n is odd we know that the prime 2 does not occur. Thus for each i we have $q_i \equiv 1$ or $q_i \equiv 3 \mod 4$. If $q_i \equiv 1 \mod 4$ for all i then we obtain a contradiction:

$$n \equiv q_1 q_2 \cdots q_k \equiv 1 \cdot 1 \cdots 1 \equiv 1 \mod 4.$$

Therefore there must exist some *i* such that $q_i \equiv 3 \mod 4$.

(b): Assume for contradiction that $3 < p_1 < p_2 < \cdots < p_k$ are the only primes $\equiv 3 \mod 4$ and define the number $n = 3 + 4p_1 \cdots p_k$. Since $n \equiv 3 + 0 \equiv 3 \mod 4$ we know from part (a) that there exists some prime p|n with $p \equiv 3 \mod 4$. But I claim that this p is not in the list $3, p_1, \ldots, p_k$. Indeed, if p = 3 then we see that 3 divides $n - 3 = 4p_1 \cdots p_k$, which by Euclid's Lemma implies that $3|4 \text{ or } 3|p_i$ for some i. But this is impossible because $p_i \neq 3$ and p_i is prime. And if $p = p_i$ for some i then we see that p_i divides $n - 4p_1 \cdots p_k = 3$, which is impossible because $3 < p_i$. Therefore our list was incomplete.

Problem 5. RSA Cryptosystem. We will fill in a gap from our in-class discussion of RSA.

- (a) For all integers $p, q, a \in \mathbb{Z}$ with gcd(p, q) = 1 show that p|a and q|a imply pq|a. [Hint: By Bézout we can write px + qy = 1 for some $x, y \in \mathbb{Z}$. Now multiply both sides by a.]
- (b) For any integers $m, k, p, q \in \mathbb{Z}$ with p and q prime, show that

$$p|m(m^{\phi(p)\phi(q)k} - 1)$$
 and $q|m(m^{\phi(p)\phi(q)k} - 1)$.

[Hint: If $p \nmid m$ then Euler's Totient Theorem says that $m^{\phi(p)} \equiv 1 \mod p$. Similarly, if $q \nmid m$ then we have $m^{\phi(q)} \equiv 1 \mod q$.]

4

(c) If p and q are distinct primes, combine parts (a) and (b) to show that

 $m^{\phi(p)\phi(q)k+1} \equiv m \mod pq$

for all integers $m, k \in \mathbb{Z}$.

(a): Let $p, q, a \in \mathbb{Z}$ with gcd(p, q) = 1. Then from Bézout's Identity we can write px + qy = 1 for some $x, y \in \mathbb{Z}$. Now suppose that we have p|a and q|a for some $a \in \mathbb{Z}$. Say a = pk and $a = q\ell$. It follows that

$$px + qy = 1$$
$$a(px + qy) = a$$
$$apx + aqy = a$$
$$q\ell px + pkqy = a$$
$$pq(\ell x + ky) = a$$

and hence pq|a.

(b): Let $m, k, p, q \in \mathbb{Z}$ with p, q prime. If $p \nmid m$ then Euler's Totient Theorem implies that

$$m^{\phi(p)} \equiv 1$$
$$(m^{\phi(p)})^{\phi(q)k} \equiv 1^{\phi(q)k}$$
$$m^{\phi(p)\phi(q)k} \equiv 1 \mod pq$$

This implies that pq (and also p) divides $m^{\phi(p)\phi(q)k} - 1$, and hence p divides $m(m^{\phi(p)\phi(q)k} - 1)$. But if p|m then we still have $p|m(m^{\phi(p)\phi(q)k} - 1)$. The same result for q follows by symmetry.

(c): Finally, if $p \neq q$ then we have gcd(p,q) = 1 and it follows from part (a) that

 $pq|m(m^{\phi(p)\phi(q)k} - 1) = m^{\phi(p)\phi(q)k+1} - m.$

In other words, we have $m^{\phi(p)\phi(q)k+1} \equiv m \mod pq$. This formula is the basis for decryption in the RSA cryptosystem.

Problem 6. Infinitely Many Primes \equiv **1 Mod 4.** We will show that there are infinitely many prime numbers in the sequence $\{1 + 4k : k \in \mathbb{Z}, k \ge 0\}$.

(a) Assume for contradiction that there are only finitely many primes in this sequence; call them p_1, p_2, \ldots, p_k and define the integers

 $x = 2p_1 p_2 \cdots p_k \quad \text{and} \quad n = x^2 + 1.$

Prove that $n \equiv 1 \mod 4$ and $n \equiv 1 \mod p_i$ for all *i*.

- (b) Let p|n be any prime divisor of n. Show that $x, x^2, x^3 \neq 1$ and $x^4 \equiv 1 \mod p$. It follows from Euler's Totient Theorem that 4 divides $\phi(p) = p 1$ and hence $p \equiv 1 \mod 4$. But then we must have $p = p_i$ for some i. Show that this leads to a contradiction.
- (a): Assume for contradiction that p_1, \ldots, p_k are the only primes $\equiv 1 \mod 4$, and define

$$x = 2p_1 \cdots p_k,$$
$$n = x^2 + 1.$$

Since $4|x^2 = n - 1$ we have $n \equiv 1 \mod 4$ and since $p_i|x^2 = n - 1$ we have $n \equiv 1 \mod p_i$ for all indices i.

(b): We know that n has some prime divisor p|n. If we can show that

- (1) p is not in the list p_1, \ldots, p_k ,
- (2) $p \equiv 1 \mod 4$,

then we will obtain the desired contradiction. To show (1), suppose that $p = p_i$ for some i. Then we obtain the contradiction $p_i|(n - x^2) = 1$. To show (2), it is enough to prove that $x \neq 0$, $x, x^2, x^3 \neq 1$ and $x^4 \equiv 1 \mod 4$. In other words, it is enough to show that $4 = \operatorname{ord}_p(x)$ is the multiplicative order of $x \mod p$. Then Euler's Totient Theorem will imply that $4 = \operatorname{ord}_p(x)|\phi(p) = p - 1$ and hence $p \equiv 1 \mod 4$.

To do this we first observe that $p|n = x^2 + 1 = x^2 - (-1)$. This implies that $x^2 \equiv -1$ and hence $x^4 \equiv (x^2)^2 \equiv (-1)^2 \equiv 1 \mod p$. Then since p|n and n is odd we know that $p \neq 2$, which implies that $x \equiv -1 \not\equiv 1 \mod p$. It follows that $x \not\equiv 0$ and $x \not\equiv 1 \mod 4$ since otherwise squaring both sides would give the contradictions $x^2 \equiv 0$ and $x^2 \equiv 1 \mod 4$. Finally, we observe that $x^3 \equiv 1 \mod 4$ is impossible since multiplying by x would give the contradiction $x \equiv x^4 \equiv 1 \mod 4$.

Discussion: The proof given here can be generalized to show that there are infinitely many primes $\equiv 1 \mod n$ for any integer $n \geq 2$. The general idea is to replace the expression $x^2 + 1$ by a certain polynomial $\Phi_n(x)$, called the *cyclotomic polynomial*. It is also true that for any gcd(a, b) = 1 there exist infinitely many primes $\equiv a \mod b$. This is a famous theorem called Dirichlet's Theorem and it is extremely difficult to prove.