
MTH 505: Number Theory Spring 2020
Homework 2 Drew Armstrong

Problem 1. Smith Normal Form. Find unimodular matrices U and V satisfying

V

ˆ

7 5 3
6 4 2

˙

U “

ˆ

1 0 0
0 2 0

˙

.

Use your answer to solve the following system of Diophantine equations:
"

7x1 ` 5x2 ` 3x3 “ 1,
6x1 ` 4x2 ` 2x3 “ 0.

There are infinitely many such matrices U and V , depending on the particular sequence of
row and column operations. Here is one such sequence:

7 5 3 1 0
6 4 2 0 1
1 0 0
0 1 0
0 0 1

 

3 5 7 1 0
2 4 6 0 1
0 0 1
0 1 0
1 0 0

 

2 4 6 0 1
3 5 7 1 0
0 0 1
0 1 0
1 0 0

 

2 0 0 0 1
3 ´1 ´2 1 0
0 0 1
0 1 0
1 ´2 ´3

 

2 0 0 0 1
1 ´1 ´2 1 ´1
0 0 1
0 1 0
1 ´2 ´3

 

1 ´1 ´2 1 ´1
2 0 0 0 1
0 0 1
0 1 0
1 ´2 ´3

 

1 0 0 1 ´1
2 2 4 0 1
0 0 1
0 1 0
1 ´1 ´1

 

1 0 0 1 ´1
0 2 4 ´2 3
0 0 1
0 1 0
1 ´1 ´1

 

1 0 0 1 ´1
0 2 0 ´2 3
0 0 1
0 1 ´2
1 ´1 1

From this we conclude that

V AU “

ˆ

1 ´1
´2 3

˙ˆ

7 5 3
6 4 2

˙

¨

˝

0 0 1
0 1 ´2
1 ´1 1

˛

‚“

ˆ

1 0 0
0 2 0

˙

“ D.

Now we want to find all integer vectors x such that Ax “ b, where b “ p1, 0q. By setting
y “ U´1x, this is equalent to

Ax “ b

V ´1DU´1x “ b

DU´1x “ V b

Dy “ V b

ˆ

1 0 0
0 2 0

˙

¨

˝

y1
y2
y3

˛

‚“

ˆ

1 ´1
´2 3

˙ˆ

1
0

˙

1



2

ˆ

y1
2y2

˙

“

ˆ

1
´2

˙

.

The complete integer solution is py1, y2, y3q “ p1,´1, kq for all k P Z, and hence

x “ Uy
¨

˝

x1
x2
x3

˛

‚“

¨

˝

0 0 1
0 1 ´2
1 ´1 1

˛

‚

¨

˝

1
´1
k

˛

‚

¨

˝

x1
x2
x3

˛

‚“ 1

¨

˝

0
0
1

˛

‚´ 1

¨

˝

0
1
´1

˛

‚` k

¨

˝

1
´2
1

˛

‚

¨

˝

x1
x2
x3

˛

‚“

¨

˝

0
´1
2

˛

‚` k

¨

˝

1
´2
1

˛

‚ for all k P Z.

Problem 2. Modular Arithmetic is Well-Defined. For all integers a, b, a1, b1 P Z with
a ” a1 and b ” b1 mod n, show that a` b ” a1 ` b and ab ” a1b1 mod n.

Proof. Assume that we have a ” a1 and b ” b1 mod n. By definition this means that
a´ a1 “ nk and b´ b1 “ n` for some integers k, ` P Z. But then we have

pa` bq ´ pa1 ` b1q “ pa´ a1q ` pb´ b1q “ nk ` n` “ npk ` `q,

which implies that a` b ” a1 ` b1 mod n and

ab´ a1b1 “ pa1 ` nkqpb1 ` n`q ´ a1b1

“ a1b1 ` b1nk ` a1n`` n2k`´ a1b1

“ npb1k ` a1`` nk`q,

which implies that ab ” a1b1 mod n. �

Problem 3. Irrational Roots. Let d, n P Z be positive integers and let n
?
d P R denote the

positive real nth root. We will show that n
?
d R Z implies n

?
d R Q.

(a) Assume that n
?
d R Z and for each prime p let νppdq P N denote the multiplicity of p in

the factorization of d. Prove that there exists some prime p with νppdq ı 0 mod n.

(b) Now assume for contradiction that n
?
d P Q. This means we can write pa{bqn “ d,

and hence an “ dbn, for some integers a, b P Z with b ‰ 0. Prove that nνppaq “
νppdq ` nνppbq and explain why this contradicts part (a).

(a): If not, then for each prime pi we can write νpipdq “ nki for some ki P Z. It follows that

d “ p
νp1 pdq
1 p

νp2 pdq
2 p

νp3 pdq
3 ¨ ¨ ¨

“ pnk11 pnk22 pnk33 ¨ ¨ ¨

“

´

pk11 p
k2
2 p

k3
3 ¨ ¨ ¨

¯n
,

which contradicts the fact that n
?
d R Z.
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(b) Assume that pa{bqn “ d for some integers a, b P Z with b ‰ 0. Then raising both sides to the
power of n and multiplying by bn gives an “ dbn. From part (a) we know there exists a prime
p such that n - νppdq. But recall that the function νp : ZÑ N satisfies νppxyq “ νppxq ` νppyq.
Thus we obtain the following contradiction:

an “ dbn

νppa
nq “ νppdb

nq

nνppaq “ νppdq ` nνppbq

npνppaq ´ νppbqq “ νppdq.

Problem 4 Infinitely Many Primes ” 3 Mod 4. We will show that there are infinitely
many prime numbers in the sequence t3` 4k : k P Z, k ě 0u.

(a) For any positiver integer n with n ” 3 mod 4, show that n has a prime factor p|n
satisfying p ” 3 mod 4. [Hint: If not then every prime factor of n is ” 1 mod 4.]

(b) Assume for contradiction that there are finitely many primes ” 3 mod 4 and call them

3 ă p1 ă p2 ă ¨ ¨ ¨ ă pk.

Now consider the number n “ 4p1p2 ¨ ¨ ¨ pk ` 3. From part (a) there exists a prime
factor p|n with p ” 3 mod 4. Show that this prime is not in the list.

(a): Let n ” 3 mod 4. We can express n “ q1 ¨ ¨ ¨ qk as a product of primes, and since n is odd
we know that the prime 2 does not occur. Thus for each i we have qi ” 1 or qi ” 3 mod 4. If
qi ” 1 mod 4 for all i then we obtain a contradiction:

n ” q1q2 ¨ ¨ ¨ qk ” 1 ¨ 1 ¨ ¨ ¨ 1 ” 1 mod 4.

Therefore there must exist some i such that qi ” 3 mod 4.

(b): Assume for contradiction that 3 ă p1 ă p2 ă ¨ ¨ ¨ ă pk are the only primes ” 3 mod 4
and define the number n “ 3 ` 4p1 ¨ ¨ ¨ pk. Since n ” 3 ` 0 ” 3 mod 4 we know from part
(a) that there exists some prime p|n with p ” 3 mod 4. But I claim that this p is not in
the list 3, p1, . . . , pk. Indeed, if p “ 3 then we see that 3 divides n ´ 3 “ 4p1 ¨ ¨ ¨ pk, which by
Euclid’s Lemma implies that 3|4 or 3|pi for some i. But this is impossible because pi ‰ 3 and
pi is prime. And if p “ pi for some i then we see that pi divides n ´ 4p1 ¨ ¨ ¨ pk “ 3, which is
impossible because 3 ă pi. Therefore our list was incomplete. �

Problem 5. RSA Cryptosystem. We will fill in a gap from our in-class discussion of RSA.

(a) For all integers p, q, a P Z with gcdpp, qq “ 1 show that p|a and q|a imply pq|a. [Hint:
By Bézout we can write px` qy “ 1 for some x, y P Z. Now multiply both sides by a.]

(b) For any integers m, k, p, q P Z with p and q prime, show that

p|mpmφppqφpqqk ´ 1q and q|mpmφppqφpqqk ´ 1q.

[Hint: If p - m then Euler’s Totient Theorem says that mφppq ” 1 mod p. Similarly, if

q - m then we have mφpqq ” 1 mod q.]
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(c) If p and q are distinct primes, combine parts (a) and (b) to show that

mφppqφpqqk`1 ” m mod pq

for all integers m, k P Z.

(a): Let p, q, a P Z with gcdpp, qq “ 1. Then from Bézout’s Identity we can write px` qy “ 1
for some x, y P Z. Now suppose that we have p|a and q|a for some a P Z. Say a “ pk and
a “ q`. It follows that

px` qy “ 1

appx` qyq “ a

apx` aqy “ a

q`px` pkqy “ a

pqp`x` kyq “ a,

and hence pq|a.

(b): Let m, k, p, q P Z with p, q prime. If p - m then Euler’s Totient Theorem implies that

mφppq ” 1

pmφppqqφpqqk ” 1φpqqk

mφppqφpqqk ” 1 mod pq.

This implies that pq (and also p) divides mφppqφpqqk´1, and hence p divides mpmφppqφpqqk´1q.

But if p|m then we still have p|mpmφppqφpqqk ´ 1q. The same result for q follows by symmetry.

(c): Finally, if p ‰ q then we have gcdpp, qq “ 1 and it follows from part (a) that

pq|mpmφppqφpqqk ´ 1q “ mφppqφpqqk`1 ´m.

In other words, we have mφppqφpqqk`1 ” m mod pq. This formula is the basis for decryption in
the RSA cryptosystem.

Problem 6. Infinitely Many Primes ” 1 Mod 4. We will show that there are infinitely
many prime numbers in the sequence t1` 4k : k P Z, k ě 0u.

(a) Assume for contradiction that there are only finitely many primes in this sequence; call
them p1, p2, . . . , pk and define the integers

x “ 2p1p2 ¨ ¨ ¨ pk and n “ x2 ` 1.

Prove that n ” 1 mod 4 and n ” 1 mod pi for all i.

(b) Let p|n be any prime divisor of n. Show that x, x2, x3 ı 1 and x4 ” 1 mod p. It follows
from Euler’s Totient Theorem that 4 divides φppq “ p´ 1 and hence p ” 1 mod 4. But
then we must have p “ pi for some i. Show that this leads to a contradiction.

(a): Assume for contradiction that p1, . . . , pk are the only primes ” 1 mod 4, and define

x “ 2p1 ¨ ¨ ¨ pk,

n “ x2 ` 1.
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Since 4|x2 “ n´ 1 we have n ” 1 mod 4 and since pi|x
2 “ n´ 1 we have n ” 1 mod pi for all

indices i.

(b): We know that n has some prime divisor p|n. If we can show that

(1) p is not in the list p1, . . . , pk,

(2) p ” 1 mod 4,

then we will obtain the desired contradiction. To show (1), suppose that p “ pi for some
i. Then we obtain the contradiction pi|pn ´ x2q “ 1. To show (2), it is enough to prove
that x ı 0, x, x2, x3 ı 1 and x4 ” 1 mod 4. In other words, it is enough to show that
4 “ ordppxq is the multiplicative order of x mod p. Then Euler’s Totient Theorem will imply
that 4 “ ordppxq|φppq “ p´ 1 and hence p ” 1 mod 4.

To do this we first observe that p|n “ x2 ` 1 “ x2 ´ p´1q. This implies that x2 ” ´1 and
hence x4 ” px2q2 ” p´1q2 ” 1 mod p. Then since p|n and n is odd we know that p ‰ 2,
which implies that x ” ´1 ı 1 mod p. It follows that x ı 0 and x ı 1 mod 4 since otherwise
squaring both sides would give the contradictions x2 ” 0 and x2 ” 1 mod 4. Finally, we
observe that x3 ” 1 mod 4 is impossible since multiplying by x would give the contradiction
x ” x4 ” 1 mod 4. �

Discussion: The proof given here can be generalized to show that there are infinitely many
primes ” 1 mod n for any integer n ě 2. The general idea is to replace the expression x2 ` 1
by a certain polynomial Φnpxq, called the cyclotomic polynomial. It is also true that for any
gcdpa, bq “ 1 there exist infinitely many primes ” a mod b. This is a famous theorem called
Dirichlet’s Theorem and it is extremely difficult to prove.


