Problem 1. Smith Normal Form. Find unimodular matrices U and V satisfying

$$
V\left(\begin{array}{lll}
7 & 5 & 3 \\
6 & 4 & 2
\end{array}\right) U=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0
\end{array}\right) .
$$

Use your answer to solve the following system of Diophantine equations:

$$
\left\{\begin{array}{l}
7 x_{1}+5 x_{2}+3 x_{3}=1, \\
6 x_{1}+4 x_{2}+2 x_{3}=0
\end{array}\right.
$$

There are infinitely many such matrices U and V, depending on the particular sequence of row and column operations. Here is one such sequence:

$$
\begin{aligned}
& \begin{array}{lll|ll}
7 & 5 & 3 & 1 & 0 \\
6 & 4 & 2 & 0 & 1 \\
\hline 1 & 0 & 0 & & \\
0 & 1 & 0 & & \\
0 & 0 & 1 & &
\end{array} \quad \begin{array}{lll|ll}
3 & 5 & 7 & 1 & 0 \\
2 & 4 & 6 & 0 & 1 \\
\hline 0 & 0 & 1 & \\
0 & 1 & 0 & \\
1 & 0 & 0 &
\end{array} \quad \rightsquigarrow \begin{array}{lll|ll}
2 & 4 & 6 & 0 & 1 \\
3 & 5 & 7 & 1 & 0 \\
\hline 0 & 0 & 1 & \\
0 & 1 & 0 & \\
1 & 0 & 0 &
\end{array} \\
& \rightsquigarrow \begin{array}{ccc|cccccccc}
2 & 0 & 0 & 0 & 1 \\
3 & -1 & -2 & 1 & 0 \\
\hline 0 & 0 & 1 \\
0 & 1 & 0 & \\
1 & -2 & -3 & & & & \begin{array}{ccc}
2 & 0 & 0 \\
1 & -1 & -2
\end{array} & 0 & 1 & -1 \\
\hline 0 & 0 & 1 & & \\
0 & 1 & 0 & \\
1 & -2 & -3 & & & & \begin{array}{ccc|cc}
1 & -1 & -2 & 1 & -1 \\
2 & 0 & 0 & 0 & 1 \\
\hline 0 & 0 & 1 & \\
0 & 1 & 0 & \\
1 & -2 & -3 &
\end{array} \\
\end{array} \\
& \rightsquigarrow \begin{array}{ccc|cc}
1 & 0 & 0 & 1 & -1 \\
2 & 2 & 4 & 0 & 1 \\
\hline 0 & 0 & 1 \\
0 & 1 & 0 & \\
1 & -1 & -1 & \\
1 & \\
\hline
\end{array}
\end{aligned}
$$

From this we conclude that

$$
V A U=\left(\begin{array}{cc}
1 & -1 \\
-2 & 3
\end{array}\right)\left(\begin{array}{ccc}
7 & 5 & 3 \\
6 & 4 & 2
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & -2 \\
1 & -1 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0
\end{array}\right)=D .
$$

Now we want to find all integer vectors \mathbf{x} such that $A \mathbf{x}=\mathbf{b}$, where $\mathbf{b}=(1,0)$. By setting $\mathbf{y}=U^{-1} \mathbf{x}$, this is equalent to

$$
\begin{aligned}
A \mathbf{x} & =\mathbf{b} \\
V^{-1} D U^{-1} \mathbf{x} & =\mathbf{b} \\
D U^{-1} \mathbf{x} & =V \mathbf{b} \\
D \mathbf{y} & =V \mathbf{b} \\
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right) & =\left(\begin{array}{cc}
1 & -1 \\
-2 & 3
\end{array}\right)\binom{1}{0}
\end{aligned}
$$

$$
\binom{y_{1}}{2 y_{2}}=\binom{1}{-2} .
$$

The complete integer solution is $\left(y_{1}, y_{2}, y_{3}\right)=(1,-1, k)$ for all $k \in \mathbb{Z}$, and hence

$$
\begin{aligned}
& \mathbf{x}=U \mathbf{y} \\
&\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & -2 \\
1 & -1 & 1
\end{array}\right)\left(\begin{array}{c}
1 \\
-1 \\
k
\end{array}\right) \\
&\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=1\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)-1\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right)+k\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right) \\
&\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
0 \\
-1 \\
2
\end{array}\right)+k\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right) \quad \text { for all } k \in \mathbb{Z}
\end{aligned}
$$

Problem 2. Modular Arithmetic is Well-Defined. For all integers $a, b, a^{\prime}, b^{\prime} \in \mathbb{Z}$ with $a \equiv a^{\prime}$ and $b \equiv b^{\prime} \bmod n$, show that $a+b \equiv a^{\prime}+b$ and $a b \equiv a^{\prime} b^{\prime} \bmod n$.

Proof. Assume that we have $a \equiv a^{\prime}$ and $b \equiv b^{\prime} \bmod n$. By definition this means that $a-a^{\prime}=n k$ and $b-b^{\prime}=n \ell$ for some integers $k, \ell \in \mathbb{Z}$. But then we have

$$
(a+b)-\left(a^{\prime}+b^{\prime}\right)=\left(a-a^{\prime}\right)+\left(b-b^{\prime}\right)=n k+n \ell=n(k+\ell),
$$

which implies that $a+b \equiv a^{\prime}+b^{\prime} \bmod n$ and

$$
\begin{aligned}
a b-a^{\prime} b^{\prime} & =\left(a^{\prime}+n k\right)\left(b^{\prime}+n \ell\right)-a^{\prime} b^{\prime} \\
& =a^{\prime} b^{\prime}+b^{\prime} n k+a^{\prime} n \ell+n^{2} k \ell-a^{\prime} b^{\prime} \\
& =n\left(b^{\prime} k+a^{\prime} \ell+n k \ell\right)
\end{aligned}
$$

which implies that $a b \equiv a^{\prime} b^{\prime} \bmod n$.

Problem 3. Irrational Roots. Let $d, n \in \mathbb{Z}$ be positive integers and let $\sqrt[n]{d} \in \mathbb{R}$ denote the positive real nth root. We will show that $\sqrt[n]{d} \notin \mathbb{Z}$ implies $\sqrt[n]{d} \notin \mathbb{Q}$.
(a) Assume that $\sqrt[n]{d} \notin \mathbb{Z}$ and for each prime p let $\nu_{p}(d) \in \mathbb{N}$ denote the multiplicity of p in the factorization of d. Prove that there exists some prime p with $\nu_{p}(d) \not \equiv 0 \bmod n$.
(b) Now assume for contradiction that $\sqrt[n]{d} \in \mathbb{Q}$. This means we can write $(a / b)^{n}=d$, and hence $a^{n}=d b^{n}$, for some integers $a, b \in \mathbb{Z}$ with $b \neq 0$. Prove that $n \nu_{p}(a)=$ $\nu_{p}(d)+n \nu_{p}(b)$ and explain why this contradicts part (a).
(a): If not, then for each prime p_{i} we can write $\nu_{p_{i}}(d)=n k_{i}$ for some $k_{i} \in \mathbb{Z}$. It follows that

$$
\begin{aligned}
d & =p_{1}^{\nu_{p_{1}}(d)} p_{2}^{\nu_{p_{2}}(d)} p_{3}^{\nu_{p_{3}}(d)} \cdots \\
& =p_{1}^{n k_{1}} p_{2}^{n k_{2}} p_{3}^{n k_{3}} \cdots \\
& =\left(p_{1}^{k_{1}} p_{2}^{k_{2}} p_{3}^{k_{3}} \cdots\right)^{n},
\end{aligned}
$$

which contradicts the fact that $\sqrt[n]{d} \notin \mathbb{Z}$.
(b) Assume that $(a / b)^{n}=d$ for some integers $a, b \in \mathbb{Z}$ with $b \neq 0$. Then raising both sides to the power of n and multiplying by b^{n} gives $a^{n}=d b^{n}$. From part (a) we know there exists a prime p such that $n \nmid \nu_{p}(d)$. But recall that the function $\nu_{p}: \mathbb{Z} \rightarrow \mathbb{N}$ satisfies $\nu_{p}(x y)=\nu_{p}(x)+\nu_{p}(y)$. Thus we obtain the following contradiction:

$$
\begin{aligned}
a^{n} & =d b^{n} \\
\nu_{p}\left(a^{n}\right) & =\nu_{p}\left(d b^{n}\right) \\
n \nu_{p}(a) & =\nu_{p}(d)+n \nu_{p}(b) \\
n\left(\nu_{p}(a)-\nu_{p}(b)\right) & =\nu_{p}(d) .
\end{aligned}
$$

Problem 4 Infinitely Many Primes $\equiv \mathbf{3}$ Mod 4 . We will show that there are infinitely many prime numbers in the sequence $\{3+4 k: k \in \mathbb{Z}, k \geqslant 0\}$.
(a) For any positiver integer n with $n \equiv 3 \bmod 4$, show that n has a prime factor $p \mid n$ satisfying $p \equiv 3 \bmod 4$. [Hint: If not then every prime factor of n is $\equiv 1 \bmod 4$.]
(b) Assume for contradiction that there are finitely many primes $\equiv 3 \bmod 4$ and call them

$$
3<p_{1}<p_{2}<\cdots<p_{k} .
$$

Now consider the number $n=4 p_{1} p_{2} \cdots p_{k}+3$. From part (a) there exists a prime factor $p \mid n$ with $p \equiv 3 \bmod 4$. Show that this prime is not in the list.
(a): Let $n \equiv 3 \bmod 4$. We can express $n=q_{1} \cdots q_{k}$ as a product of primes, and since n is odd we know that the prime 2 does not occur. Thus for each i we have $q_{i} \equiv 1$ or $q_{i} \equiv 3 \bmod 4$. If $q_{i} \equiv 1 \bmod 4$ for all i then we obtain a contradiction:

$$
n \equiv q_{1} q_{2} \cdots q_{k} \equiv 1 \cdot 1 \cdots 1 \equiv 1 \bmod 4
$$

Therefore there must exist some i such that $q_{i} \equiv 3 \bmod 4$.
(b): Assume for contradiction that $3<p_{1}<p_{2}<\cdots<p_{k}$ are the only primes $\equiv 3 \bmod 4$ and define the number $n=3+4 p_{1} \cdots p_{k}$. Since $n \equiv 3+0 \equiv 3 \bmod 4$ we know from part (a) that there exists some prime $p \mid n$ with $p \equiv 3 \bmod 4$. But I claim that this p is not in the list $3, p_{1}, \ldots, p_{k}$. Indeed, if $p=3$ then we see that 3 divides $n-3=4 p_{1} \cdots p_{k}$, which by Euclid's Lemma implies that $3 \mid 4$ or $3 \mid p_{i}$ for some i. But this is impossible because $p_{i} \neq 3$ and p_{i} is prime. And if $p=p_{i}$ for some i then we see that p_{i} divides $n-4 p_{1} \cdots p_{k}=3$, which is impossible because $3<p_{i}$. Therefore our list was incomplete.

Problem 5. RSA Cryptosystem. We will fill in a gap from our in-class discussion of RSA.
(a) For all integers $p, q, a \in \mathbb{Z}$ with $\operatorname{gcd}(p, q)=1$ show that $p \mid a$ and $q \mid a$ imply $p q \mid a$. [Hint: By Bézout we can write $p x+q y=1$ for some $x, y \in \mathbb{Z}$. Now multiply both sides by a.]
(b) For any integers $m, k, p, q \in \mathbb{Z}$ with p and q prime, show that

$$
p \mid m\left(m^{\phi(p) \phi(q) k}-1\right) \quad \text { and } \quad q \mid m\left(m^{\phi(p) \phi(q) k}-1\right) .
$$

[Hint: If $p \nmid m$ then Euler's Totient Theorem says that $m^{\phi(p)} \equiv 1 \bmod p$. Similarly, if $q \nmid m$ then we have $m^{\phi(q)} \equiv 1 \bmod q$.]
(c) If p and q are distinct primes, combine parts (a) and (b) to show that

$$
m^{\phi(p) \phi(q) k+1} \equiv m \bmod p q
$$

for all integers $m, k \in \mathbb{Z}$.
(a): Let $p, q, a \in \mathbb{Z}$ with $\operatorname{gcd}(p, q)=1$. Then from Bézout's Identity we can write $p x+q y=1$ for some $x, y \in \mathbb{Z}$. Now suppose that we have $p \mid a$ and $q \mid a$ for some $a \in \mathbb{Z}$. Say $a=p k$ and $a=q \ell$. It follows that

$$
\begin{aligned}
p x+q y & =1 \\
a(p x+q y) & =a \\
a p x+a q y & =a \\
q \ell p x+p k q y & =a \\
p q(\ell x+k y) & =a
\end{aligned}
$$

and hence $p q \mid a$.
(b): Let $m, k, p, q \in \mathbb{Z}$ with p, q prime. If $p \nmid m$ then Euler's Totient Theorem implies that

$$
\begin{aligned}
m^{\phi(p)} & \equiv 1 \\
\left(m^{\phi(p)}\right)^{\phi(q) k} & \equiv 1^{\phi(q) k} \\
m^{\phi(p) \phi(q) k} & \equiv 1 \bmod p q .
\end{aligned}
$$

This implies that $p q$ (and also p) divides $m^{\phi(p) \phi(q) k}-1$, and hence p divides $m\left(m^{\phi(p) \phi(q) k}-1\right.$). But if $p \mid m$ then we still have $p \mid m\left(m^{\phi(p) \phi(q) k}-1\right)$. The same result for q follows by symmetry.
(c): Finally, if $p \neq q$ then we have $\operatorname{gcd}(p, q)=1$ and it follows from part (a) that

$$
p q \mid m\left(m^{\phi(p) \phi(q) k}-1\right)=m^{\phi(p) \phi(q) k+1}-m .
$$

In other words, we have $m^{\phi(p) \phi(q) k+1} \equiv m \bmod p q$. This formula is the basis for decryption in the RSA cryptosystem.

Problem 6. Infinitely Many Primes $\equiv \mathbf{1}$ Mod 4. We will show that there are infinitely many prime numbers in the sequence $\{1+4 k: k \in \mathbb{Z}, k \geqslant 0\}$.
(a) Assume for contradiction that there are only finitely many primes in this sequence; call them $p_{1}, p_{2}, \ldots, p_{k}$ and define the integers

$$
x=2 p_{1} p_{2} \cdots p_{k} \quad \text { and } \quad n=x^{2}+1
$$

Prove that $n \equiv 1 \bmod 4$ and $n \equiv 1 \bmod p_{i}$ for all i.
(b) Let $p \mid n$ be any prime divisor of n. Show that $x, x^{2}, x^{3} \not \equiv 1$ and $x^{4} \equiv 1 \bmod p$. It follows from Euler's Totient Theorem that 4 divides $\phi(p)=p-1$ and hence $p \equiv 1 \bmod 4$. But then we must have $p=p_{i}$ for some i. Show that this leads to a contradiction.
(a): Assume for contradiction that p_{1}, \ldots, p_{k} are the only primes $\equiv 1 \bmod 4$, and define

$$
\begin{aligned}
& x=2 p_{1} \cdots p_{k} \\
& n=x^{2}+1
\end{aligned}
$$

Since $4 \mid x^{2}=n-1$ we have $n \equiv 1 \bmod 4$ and since $p_{i} \mid x^{2}=n-1$ we have $n \equiv 1 \bmod p_{i}$ for all indices i.
(b): We know that n has some prime divisor $p \mid n$. If we can show that
(1) p is not in the list p_{1}, \ldots, p_{k},
(2) $p \equiv 1 \bmod 4$,
then we will obtain the desired contradiction. To show (1), suppose that $p=p_{i}$ for some i. Then we obtain the contradiction $p_{i} \mid\left(n-x^{2}\right)=1$. To show (2), it is enough to prove that $x \not \equiv 0, x, x^{2}, x^{3} \not \equiv 1$ and $x^{4} \equiv 1 \bmod 4$. In other words, it is enough to show that $4=\operatorname{ord}_{p}(x)$ is the multiplicative order of $x \bmod p$. Then Euler's Totient Theorem will imply that $4=\operatorname{ord}_{p}(x) \mid \phi(p)=p-1$ and hence $p \equiv 1 \bmod 4$.
To do this we first observe that $p \mid n=x^{2}+1=x^{2}-(-1)$. This implies that $x^{2} \equiv-1$ and hence $x^{4} \equiv\left(x^{2}\right)^{2} \equiv(-1)^{2} \equiv 1 \bmod p$. Then since $p \mid n$ and n is odd we know that $p \neq 2$, which implies that $x \equiv-1 \not \equiv 1 \bmod p$. It follows that $x \not \equiv 0$ and $x \not \equiv 1 \bmod 4$ since otherwise squaring both sides would give the contradictions $x^{2} \equiv 0$ and $x^{2} \equiv 1 \bmod 4$. Finally, we observe that $x^{3} \equiv 1 \bmod 4$ is impossible since multiplying by x would give the contradiction $x \equiv x^{4} \equiv 1 \bmod 4$.

Discussion: The proof given here can be generalized to show that there are infinitely many primes $\equiv 1 \bmod n$ for any integer $n \geqslant 2$. The general idea is to replace the expression $x^{2}+1$ by a certain polynomial $\Phi_{n}(x)$, called the cyclotomic polynomial. It is also true that for any $\operatorname{gcd}(a, b)=1$ there exist infinitely many primes $\equiv a \bmod b$. This is a famous theorem called Dirichlet's Theorem and it is extremely difficult to prove.

