Problem 1. Smith Normal Form. Find unimodular matrices U and V satisfying

$$V\begin{pmatrix} 7 & 5 & 3\\ 6 & 4 & 2 \end{pmatrix}U = \begin{pmatrix} 1 & 0 & 0\\ 0 & 2 & 0 \end{pmatrix}.$$

Use your answer from part (a) to solve the following system of Diophantine equations:

 $\begin{cases} 7x_1 + 5x_2 + 3x_3 = 1, \\ 6x_1 + 4x_2 + 2x_3 = 0. \end{cases}$

Problem 2. Modular Arithmetic is Well-Defined. For all integers $a, b, a', b' \in \mathbb{Z}$ with $a \equiv a'$ and $b \equiv b' \mod n$, show that $a + b \equiv a' + b$ and $ab \equiv a'b' \mod n$.

Problem 3. Irrational Roots. Let $d, n \in \mathbb{Z}$ be positive integers and let $\sqrt[n]{d} \in \mathbb{R}$ denote the positive real *n*th root. We will show that $\sqrt[n]{d} \notin \mathbb{Z}$ implies $\sqrt[n]{d} \notin \mathbb{Q}$.

- (a) Assume that $\sqrt[n]{d} \notin \mathbb{Z}$ and for each prime p let $\nu_p(d) \in \mathbb{N}$ denote the multiplicity of p in the factorization of d. Prove that there exists some prime p with $\nu_p(d) \neq 0 \mod n$.
- (b) Now assume for contradiction that $\sqrt[n]{d} \in \mathbb{Q}$. This means we can write $(a/b)^n = d$, and hence $a^n = db^n$, for some integers $a, b \in \mathbb{Z}$ with $b \neq 0$. Prove that $n\nu_p(a) = \nu_p(d) + n\nu_p(b)$ and explain why this contradicts part (a).

Problem 4 Infinitely Many Primes \equiv **3 Mod 4.** We will show that there are infinitely many prime numbers in the sequence $\{3 + 4k : k \in \mathbb{Z}, k \ge 0\}$.

- (a) For any positiver integer n with $n \equiv 3 \mod 4$, show that n has a prime factor p|n satisfying $p \equiv 3 \mod 4$. [Hint: If not then every prime factor of n is $\equiv 1 \mod 4$.]
- (b) Assume for contradiction that there are finitely many primes $\equiv 3 \mod 4$ and call them

 $3 < p_1 < p_2 < \cdots < p_k.$

Now consider the number $n = 4p_1p_2\cdots p_k + 3$. From part (a) there exists a prime factor p|n with $p \equiv 3 \mod 4$. Show that this prime is not in the list.

Problem 5. RSA Cryptosystem. We will fill in a gap from our in-class discussion of RSA.

- (a) For all integers $p, q, a \in \mathbb{Z}$ with gcd(p, q) = 1 show that p|a and q|a imply pq|a. [Hint: By Bézout we can write px + qy = 1 for some $x, y \in \mathbb{Z}$. Now multiply both sides by a.]
- (b) For any integers $m, k, p, q \in \mathbb{Z}$ with p and q prime, show that

 $p|m(m^{\phi(p)\phi(q)k} - 1)$ and $q|m(m^{\phi(p)\phi(q)k} - 1)$.

[Hint: If $p \nmid m$ then Euler's Totient Theorem says that $m^{\phi(p)} \equiv 1 \mod p$. Similarly, if $q \nmid m$ then we have $m^{\phi(q)} \equiv 1 \mod q$.]

(c) If p and q are distinct primes, combine parts (a) and (b) to show that

 $m^{\phi(p)\phi(q)k+1} \equiv m \mod pq$

for all integers $m, k \in \mathbb{Z}$.

Problem 6. Infinitely Many Primes \equiv **1 Mod 4.** We will show that there are infinitely many prime numbers in the sequence $\{1 + 4k : k \in \mathbb{Z}, k \ge 0\}$.

(a) Assume for contradiction that there are only finitely many primes in this sequence; call them p_1, p_2, \ldots, p_k and define the integers

 $x = 2p_1p_2\cdots p_k$ and $n = x^2 + 1$.

Prove that $n \equiv 1 \mod 4$ and $n \equiv 1 \mod p_i$ for all i.

(b) Let p|n be any prime divisor of n. Show that $x, x^2, x^3 \neq 1$ and $x^4 \equiv 1 \mod p$. It follows from Euler's Totient Theorem that 4 divides $\phi(p) = p - 1$ and hence $p \equiv 1 \mod 4$. But then we must have $p = p_i$ for some i. Show that this leads to a contradiction.