Problem 1. Smith Normal Form. Find unimodular matrices U and V satisfying

$$
V\left(\begin{array}{lll}
7 & 5 & 3 \\
6 & 4 & 2
\end{array}\right) U=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0
\end{array}\right) .
$$

Use your answer from part (a) to solve the following system of Diophantine equations:

$$
\left\{\begin{array}{r}
7 x_{1}+5 x_{2}+3 x_{3}=1, \\
6 x_{1}+4 x_{2}+2 x_{3}=0 .
\end{array}\right.
$$

Problem 2. Modular Arithmetic is Well-Defined. For all integers $a, b, a^{\prime}, b^{\prime} \in \mathbb{Z}$ with $a \equiv a^{\prime}$ and $b \equiv b^{\prime} \bmod n$, show that $a+b \equiv a^{\prime}+b$ and $a b \equiv a^{\prime} b^{\prime} \bmod n$.

Problem 3. Irrational Roots. Let $d, n \in \mathbb{Z}$ be positive integers and let $\sqrt[n]{d} \in \mathbb{R}$ denote the positive real nth root. We will show that $\sqrt[n]{d} \notin \mathbb{Z}$ implies $\sqrt[n]{d} \notin \mathbb{Q}$.
(a) Assume that $\sqrt[n]{d} \notin \mathbb{Z}$ and for each prime p let $\nu_{p}(d) \in \mathbb{N}$ denote the multiplicity of p in the factorization of d. Prove that there exists some prime p with $\nu_{p}(d) \not \equiv 0 \bmod n$.
(b) Now assume for contradiction that $\sqrt[n]{d} \in \mathbb{Q}$. This means we can write $(a / b)^{n}=d$, and hence $a^{n}=d b^{n}$, for some integers $a, b \in \mathbb{Z}$ with $b \neq 0$. Prove that $n \nu_{p}(a)=$ $\nu_{p}(d)+n \nu_{p}(b)$ and explain why this contradicts part (a).

Problem 4 Infinitely Many Primes $\equiv \mathbf{3}$ Mod 4. We will show that there are infinitely many prime numbers in the sequence $\{3+4 k: k \in \mathbb{Z}, k \geqslant 0\}$.
(a) For any positiver integer n with $n \equiv 3 \bmod 4$, show that n has a prime factor $p \mid n$ satisfying $p \equiv 3 \bmod 4$. [Hint: If not then every prime factor of n is $\equiv 1 \bmod 4$.]
(b) Assume for contradiction that there are finitely many primes $\equiv 3 \bmod 4$ and call them

$$
3<p_{1}<p_{2}<\cdots<p_{k} .
$$

Now consider the number $n=4 p_{1} p_{2} \cdots p_{k}+3$. From part (a) there exists a prime factor $p \mid n$ with $p \equiv 3 \bmod 4$. Show that this prime is not in the list.

Problem 5. RSA Cryptosystem. We will fill in a gap from our in-class discussion of RSA.
(a) For all integers $p, q, a \in \mathbb{Z}$ with $\operatorname{gcd}(p, q)=1$ show that $p \mid a$ and $q \mid a$ imply $p q \mid a$. [Hint: By Bézout we can write $p x+q y=1$ for some $x, y \in \mathbb{Z}$. Now multiply both sides by a.]
(b) For any integers $m, k, p, q \in \mathbb{Z}$ with p and q prime, show that

$$
p \mid m\left(m^{\phi(p) \phi(q) k}-1\right) \quad \text { and } \quad q \mid m\left(m^{\phi(p) \phi(q) k}-1\right) .
$$

[Hint: If $p \nmid m$ then Euler's Totient Theorem says that $m^{\phi(p)} \equiv 1 \bmod p$. Similarly, if $q \nmid m$ then we have $m^{\phi(q)} \equiv 1 \bmod q$.]
(c) If p and q are distinct primes, combine parts (a) and (b) to show that

$$
m^{\phi(p) \phi(q) k+1} \equiv m \bmod p q
$$

for all integers $m, k \in \mathbb{Z}$.

Problem 6. Infinitely Many Primes $\equiv \mathbf{1}$ Mod 4. We will show that there are infinitely many prime numbers in the sequence $\{1+4 k: k \in \mathbb{Z}, k \geqslant 0\}$.
(a) Assume for contradiction that there are only finitely many primes in this sequence; call them $p_{1}, p_{2}, \ldots, p_{k}$ and define the integers

$$
x=2 p_{1} p_{2} \cdots p_{k} \quad \text { and } \quad n=x^{2}+1 .
$$

Prove that $n \equiv 1 \bmod 4$ and $n \equiv 1 \bmod p_{i}$ for all i.
(b) Let $p \mid n$ be any prime divisor of n. Show that $x, x^{2}, x^{3} \not \equiv 1$ and $x^{4} \equiv 1 \bmod p$. It follows from Euler's Totient Theorem that 4 divides $\phi(p)=p-1$ and hence $p \equiv 1 \bmod 4$. But then we must have $p=p_{i}$ for some i. Show that this leads to a contradiction.

