Problem 1. Find the complete integer solution $x, y \in \mathbb{Z}$ to the following Diophantine equation:

$$
1035 x+644 y=299 .
$$

Consider the set of integer vectors (x, y, z) satisfying $1035 x+644 y=z$. Beginning with the obvious triples $\mathbf{r}_{1}:=(1,0,1035)$ and $r_{2}:=(0,1,644)$, we perform a sequence of elementary operations corresponding to the Euclidean algorithm:

x	y	z	
1	0	1035	\mathbf{r}_{1}
0	1	644	\mathbf{r}_{2}
1	-1	391	$\mathbf{r}_{3}=\mathbf{r}_{1}-1 \mathbf{r}_{2}$
-1	2	253	$\mathbf{r}_{4}=\mathbf{r}_{2}-1 \mathbf{r}_{3}$
2	-3	138	$\mathbf{r}_{5}=\mathbf{r}_{3}-1 \mathbf{r}_{4}$
-3	5	115	$\mathbf{r}_{6}=\mathbf{r}_{4}-1 \mathbf{r}_{5}$
5	-8	23	$\mathbf{r}_{7}=\mathbf{r}_{5}-1 \mathbf{r}_{6}$
-28	45	0	$\mathbf{r}_{8}=\mathbf{r}_{6}-5 \mathbf{r}_{7}$

In particular, we see that $\operatorname{gcd}(1035,644)=23$, and we note that $299=23 \cdot 13$. From theorems in the notes, we conclude that the complete solution is given by the linear combinations $13 \mathbf{r}_{7}+k \mathbf{r}_{8}=(15-28 k,-24+45 k, 23)$ for all $k \in \mathbb{Z}$:

$$
1035(15-28 k)+644(-24+45 k)=23 .
$$

Problem 2. Let $a, b, c, k \in \mathbb{Z}$ be any integers satisfying $a=b k+c$. In this case prove that

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, c) .
$$

[Hint: Show that the sets of common divisors are the same: $\operatorname{Div}(a, b)=\operatorname{Div}(b, c)$. It follows that the greatest element of each set is the same.]

To prove that the sets $\operatorname{Div}(a, b)$ and $\operatorname{Div}(b, c)$ are the same we must show (1) that $\operatorname{Div}(a, b) \subseteq$ $\operatorname{Div}(b, c)$ and $(2) \operatorname{Div}(b, c) \subseteq \operatorname{Div}(a, b)$.
(1): Consider any element $d \in \operatorname{Div}(a, b)$. By definition this means that $a=d a^{\prime}$ and $b=d b^{\prime}$ for some integers $a^{\prime}, b^{\prime} \in \mathbb{Z}$. But then we also have

$$
c=a-b k=d a^{\prime}-d b^{\prime} k=d\left(a^{\prime}-b^{\prime} k\right),
$$

which implies that $d \mid c$ and hence $d \in \operatorname{Div}(b, c)$.
(2): Consider any element $d \in \operatorname{Div}(b, c)$. By definition this means that $b=d b^{\prime}$ and $c=d c^{\prime}$ for some integers $b^{\prime}, c^{\prime} \in \mathbb{Z}$. But then we also have

$$
a=b k+c=d b^{\prime} k+d c^{\prime}=d\left(b^{\prime} k+c^{\prime}\right),
$$

which implies that $d \mid a$ and hence $d \in \operatorname{Div}(a, b)$.

Problem 3. In this problem you will give a non-constructive proof of Bézout's identity. Consider two nonzero integers $a, b \in \mathbb{Z}$ and define the set

$$
S=\{a x+b y: x, y \in \mathbb{Z} \text { and } a x+b y>0\} .
$$

This set is non-empty because it contains $|a|$, hence it has a least element by well-ordering. Let $d \in S$ denote this least element.
(a) Prove that d is a common divisor of a and b. [Hint: Let r be the remainder of a mod d. If $r \neq 0$ show that r is an element of S that is smaller than d.]
(b) Continuing from (a), show that d is the greatest common divisor of a and b. [Hint: Let e be any common divisor of a and b. Use (a) to show that $e \leqslant d$.]
(a): By definition of d we know that $d=a x+b y>0$ for some integers $x, y \in \mathbb{Z}$. Since $d \neq 0$ we may divide a by d to obtain $a=q d+r$ for some integers $q, r \in \mathbb{Z}$ satisfying $0 \leqslant r<d$. We will show that $r=0$ and hence $d \mid a$. So let us assume for contradiction that $r>0$. Then since

$$
r=a-q d=a-q(a x+b y)=a(1-q x)+b(-q y)=a(\text { some integer })+b(\text { some integer })
$$

we find that r is an element of S that is strictly smaller than d. Contradiction. A similar argument shows that $d \mid b$.
(b): Suppose that $e \in \mathbb{Z}$ satisfies $e \mid a$ and $e \mid b$. Say $a=e a^{\prime}$ and $b=e b^{\prime}$ for some integers $a^{\prime}, b^{\prime} \in \mathbb{Z}$. Then since $d=a x+b y$ we have

$$
d=a x+b y=e a^{\prime} x+e b^{\prime} y=e\left(a^{\prime} x+b^{\prime} y\right)
$$

Finally, since $e \mid d$ and $d>0$ we conclude that $e \leqslant d$ as desired.
Combining (a) and (b) shows that $d=\operatorname{gcd}(a, b)$. In particular, we have proved that there exist integers $x, y \in \mathbb{Z}$ satisfying $a x+b y=\operatorname{gcd}(a, b)$. This is called Bézout's Identity.

Problem 4. Consider any non-zero integers $a, b, c \in \mathbb{Z}$. In class I defined the greatest common divisor $\operatorname{gcd}(a, b, c)$ as the greatest element of the following set of common divisors:

$$
\operatorname{Div}(a, b, c)=\{d \in \mathbb{Z}: d \mid a \text { and } d \mid b \text { and } d \mid c\}
$$

Prove that the same concept can also be defined recursively, as follows:

$$
\operatorname{gcd}(a, b, c)=\operatorname{gcd}(\operatorname{gcd}(a, b), c)
$$

[Hint: This comes down to the fact that any common divisor of a and b is a divisor of $\operatorname{gcd}(a, b)$, which can be proved using Bézout's identity.]

Let's say that $d:=\operatorname{gcd}(a, b)$ with $a=d a^{\prime}$ and $b=d b^{\prime}$. Following the idea in Problem 2, we will prove that the sets $\operatorname{Div}(a, b, c)$ and $\operatorname{Div}(d, c)$ are the same.
(1): First we assume that $e \in \operatorname{Div}(d, c)$, so that $e \mid d$ and $e \mid c$. Let's say $d=e d^{\prime}$. But then we have $a=d a^{\prime}=e d^{\prime} a^{\prime}$ and $b=d b^{\prime}=e d^{\prime} b^{\prime}$, which implies that $e \mid a$ and $e \mid b$. In summary, we have shown that $e \in \operatorname{Div}(a, b, c)$.
(2): Conversely, suppose that we have $e \in \operatorname{Div}(a, b, c)$ with $a=e a^{\prime \prime}, b=e b^{\prime \prime}$ and $c=e c^{\prime \prime}$. Our goal is to show that $e \mid d$ and hence $e \in \operatorname{Div}(d, c)$. But we know from Bézout's Identity (Problem 3) that there exist some $x, y \in \mathbb{Z}$ satisfying $a x+b y=d$. It follows from this that

$$
d=a x+b y=e a^{\prime \prime} x+e b^{\prime \prime} y=e\left(a^{\prime \prime} x+b^{\prime \prime} y\right)
$$

and hence $e \mid d$ as desired.

Problem 5. Euclid's Lemma. For any integers $a, b, c \in \mathbb{Z}$ with $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, prove that $a \mid c$. [Hint: From Bézout's identity we know that $a x+b y=1$ for some $x, y \in \mathbb{Z}$. Multiply both sides by c.]

Since $a \mid b c$ we have $b c=a k$ for some $k \in \mathbb{Z}$. And from Bézout's Identity we have $a x+b y=1$ for some integers $x, y \in \mathbb{Z}$. Then multiplying both sides by c gives

$$
\begin{aligned}
a x+b y & =1 \\
c(a x+b y) & =c \\
a c x+b c y & =c \\
a c x+a k y & =c \\
a(c x+k y) & =c,
\end{aligned}
$$

which implies that $a \mid c$.
Problem 6. Lamé's Theorem. Consider some integers $a, b \in \mathbb{Z}$ with $a>b \geqslant 0$ and suppose that the Euclidean algorithm uses n divisions with remainder to compute $\operatorname{gcd}(a, b)$. In this case, Lamé's Theorem says that we must have $a \geqslant F_{n+1}$ and $b \geqslant F_{n}$, where the Fibonacci numbers are defined by $F_{0}=0, F_{1}=1$ and $F_{m}=F_{m-1}+F_{m-2}$.
(a) Prove Lamé's Theorem by induction on n, starting with $n=0$ and $n=1$.
(b) Prove by induction that for all $n \geqslant 2$ we have

$$
F_{n} \geqslant \phi^{n-2}=\left(\frac{1+\sqrt{5}}{2}\right)^{n-2} .
$$

(c) Assuming that $n \geqslant 2$, combine parts (a) and (b) to prove that we have $n<5 d+2$, where d is the number of decimal digits in b.

Before starting the proof, let me first clearly state the Euclidean algorithm. Given a pair (a, b) with $a>b \geqslant 0$ we first define $r_{0}:=a$ and $r_{1}:=b$ then for all $r_{i} \neq 0$ we apply division with remainder to obtain $r_{i-1}=q_{i+1} r_{i}+r_{i+1}$ and $0 \leqslant r_{i+1}<r_{i}$. This produces a decreasing sequence of remainders:

$$
r_{0}>r_{1}>r_{2}>\cdots>r_{n}>r_{n+1}=0 .
$$

If $r_{n}>r_{n+1}=0$ then we say that the algorithm "terminates in n steps." It is not important for this problem, but we also conclude from Problem 2 that

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}\left(r_{0}, r_{1}\right)=\operatorname{gcd}\left(r_{1}, r_{2}\right)=\cdots=\operatorname{gcd}\left(r_{n}, r_{n+1}\right)=\operatorname{gcd}\left(r_{n}, 0\right)=r_{n} .
$$

(a): Base Cases. If the algorithm terminates in $n=0$ steps then we must have $b=0$, in which case $b=0 \geqslant F_{0}$ and $a \geqslant 1=F_{1}$. If the algorithm terminates in $n=1$ steps then we must have $b \geqslant 1$ and $a=q b+0$ for some quotient $q \geqslant 1$, which implies that $b \geqslant 1=F_{1}$ and $a \geqslant b+1 \geqslant 2 \geqslant F_{2}$.
Induction Step. Now fix some integer $n \geqslant 2$ and let us assume that:

- The Euclidean algorithm applied (a, b) terminates in n steps.
- Lamé's Theorem holds for any pair when the algorithm terminates in $n-1$ steps.

Let $r_{0}=a$ and $r_{1}=b$, as in the above discussion. Since the algorithm applied to $\left(r_{0}, r_{1}\right)=$ (a, b) terminates in n steps it follows that the algorithm applied to $\left(r_{1}, r_{2}\right)=\left(b, r_{2}\right)$ terminates in $n-1$ steps. Thus we may assume for induction that $b \geqslant F_{n}$ and $r_{2} \geqslant F_{n-1}$. Finally, since $q_{2}>0$ this implies that

$$
a=q_{2} b+r_{2} \geqslant b+r_{2} \geqslant F_{n}+F_{n-1}=F_{n+1} .
$$

(b): We observe that the golden ratio $\phi=(1+\sqrt{5}) / 2$ satisfies $\phi^{2}=\phi+1$, and hence $\phi^{n+2}=$ $\phi^{n+1}+\phi^{n}$ for all integers $n \geqslant 0$. Observe that $F_{2}=1 \geqslant 1=\phi^{0}$ and $F_{3}=2 \geqslant 1.618=\phi^{1}$. Now fix some integer $n \geqslant 4$ and assume for induction that $F_{k} \geqslant \phi^{k-2}$ for all $2 \leqslant k<n$. It follows that

$$
F_{n}=F_{n-1}+F_{n-2} \geqslant \phi^{n-3}+\phi^{n-4}=\phi^{n-2} .
$$

(c): Suppose that the Euclidean algorithm applied to (a, b) terminates in n steps. We showed in part (a) that $b \geqslant F_{n}$ and we showed in part (b) that $F_{n} \geqslant \phi^{n-2}$, hence $b \geqslant \phi^{n-2}$. Take the logarithm base 10 of both sides to obtain

$$
\begin{aligned}
b & \geqslant \phi^{n-2} \\
\log (b) & \geqslant(n-2) \log (\phi) \\
\log (b) / \log (\phi)+2 & \geqslant n .
\end{aligned}
$$

We observe that $1 / \log (\phi)=4.785<5$. If d is the number of decimal digits in b then we also have $10^{d-1} \leqslant b<10^{d}$, which implies that $d-1 \leqslant \log (b)<d$. It follows that

$$
n \leqslant \frac{1}{\log (\phi)} \log (b)+2<5 d+2
$$

[Remark: Maybe this can be improved to $n \leqslant 5 d$ with a bit more work.]

