
MTH 505: Number Theory Spring 2020
Homework 1 Drew Armstrong

Problem 1. Find the complete integer solution x, y P Z to the following Diophantine equation:

1035x` 644y “ 299.

Consider the set of integer vectors px, y, zq satisfying 1035x ` 644y “ z. Beginning with the
obvious triples r1 :“ p1, 0, 1035q and r2 :“ p0, 1, 644q, we perform a sequence of elementary
operations corresponding to the Euclidean algorithm:

x y z
1 0 1035 r1
0 1 644 r2
1 ´1 391 r3 “ r1 ´ 1r2

´1 2 253 r4 “ r2 ´ 1r3
2 ´3 138 r5 “ r3 ´ 1r4

´3 5 115 r6 “ r4 ´ 1r5
5 ´8 23 r7 “ r5 ´ 1r6

´28 45 0 r8 “ r6 ´ 5r7

In particular, we see that gcdp1035, 644q “ 23, and we note that 299 “ 23 ¨13. From theorems
in the notes, we conclude that the complete solution is given by the linear combinations
13r7 ` kr8 “ p15´ 28k,´24` 45k, 23q for all k P Z:

1035p15´ 28kq ` 644p´24` 45kq “ 23.

Problem 2. Let a, b, c, k P Z be any integers satisfying a “ bk ` c. In this case prove that

gcdpa, bq “ gcdpb, cq.

[Hint: Show that the sets of common divisors are the same: Divpa, bq “ Divpb, cq. It follows
that the greatest element of each set is the same.]

To prove that the sets Divpa, bq and Divpb, cq are the same we must show (1) that Divpa, bq Ď
Divpb, cq and (2) Divpb, cq Ď Divpa, bq.

(1): Consider any element d P Divpa, bq. By definition this means that a “ da1 and b “ db1 for
some integers a1, b1 P Z. But then we also have

c “ a´ bk “ da1 ´ db1k “ dpa1 ´ b1kq,

which implies that d|c and hence d P Divpb, cq.

(2): Consider any element d P Divpb, cq. By definition this means that b “ db1 and c “ dc1 for
some integers b1, c1 P Z. But then we also have

a “ bk ` c “ db1k ` dc1 “ dpb1k ` c1q,

which implies that d|a and hence d P Divpa, bq.

Problem 3. In this problem you will give a non-constructive proof of Bézout’s identity.
Consider two nonzero integers a, b P Z and define the set

S “ tax` by : x, y P Z and ax` by ą 0u.
1



2

This set is non-empty because it contains |a|, hence it has a least element by well-ordering.
Let d P S denote this least element.

(a) Prove that d is a common divisor of a and b. [Hint: Let r be the remainder of a mod
d. If r ‰ 0 show that r is an element of S that is smaller than d.]

(b) Continuing from (a), show that d is the greatest common divisor of a and b. [Hint:
Let e be any common divisor of a and b. Use (a) to show that e ď d.]

(a): By definition of d we know that d “ ax` by ą 0 for some integers x, y P Z. Since d ‰ 0
we may divide a by d to obtain a “ qd` r for some integers q, r P Z satisfying 0 ď r ă d. We
will show that r “ 0 and hence d|a. So let us assume for contradiction that r ą 0. Then since

r “ a´ qd “ a´ qpax` byq “ ap1´ qxq ` bp´qyq “ apsome integerq ` bpsome integerq

we find that r is an element of S that is strictly smaller than d. Contradiction. A similar
argument shows that d|b.

(b): Suppose that e P Z satisfies e|a and e|b. Say a “ ea1 and b “ eb1 for some integers
a1, b1 P Z. Then since d “ ax` by we have

d “ ax` by “ ea1x` eb1y “ epa1x` b1yq.

Finally, since e|d and d ą 0 we conclude that e ď d as desired.

Combining (a) and (b) shows that d “ gcdpa, bq. In particular, we have proved that there
exist integers x, y P Z satisfying ax` by “ gcdpa, bq. This is called Bézout’s Identity.

Problem 4. Consider any non-zero integers a, b, c P Z. In class I defined the greatest common
divisor gcdpa, b, cq as the greatest element of the following set of common divisors:

Divpa, b, cq “ td P Z : d|a and d|b and d|cu.

Prove that the same concept can also be defined recursively, as follows:

gcdpa, b, cq “ gcdpgcdpa, bq, cq.

[Hint: This comes down to the fact that any common divisor of a and b is a divisor of gcdpa, bq,
which can be proved using Bézout’s identity.]

Let’s say that d :“ gcdpa, bq with a “ da1 and b “ db1. Following the idea in Problem 2, we
will prove that the sets Divpa, b, cq and Divpd, cq are the same.

(1): First we assume that e P Divpd, cq, so that e|d and e|c. Let’s say d “ ed1. But then we
have a “ da1 “ ed1a1 and b “ db1 “ ed1b1, which implies that e|a and e|b. In summary, we have
shown that e P Divpa, b, cq.

(2): Conversely, suppose that we have e P Divpa, b, cq with a “ ea2, b “ eb2 and c “ ec2.
Our goal is to show that e|d and hence e P Divpd, cq. But we know from Bézout’s Identity
(Problem 3) that there exist some x, y P Z satisfying ax` by “ d. It follows from this that

d “ ax` by “ ea2x` eb2y “ epa2x` b2yq,

and hence e|d as desired.

Problem 5. Euclid’s Lemma. For any integers a, b, c P Z with a|bc and gcdpa, bq “ 1, prove
that a|c. [Hint: From Bézout’s identity we know that ax` by “ 1 for some x, y P Z. Multiply
both sides by c.]
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Since a|bc we have bc “ ak for some k P Z. And from Bézout’s Identity we have ax` by “ 1
for some integers x, y P Z. Then multiplying both sides by c gives

ax` by “ 1

cpax` byq “ c

acx` bcy “ c

acx` aky “ c

apcx` kyq “ c,

which implies that a|c.

Problem 6. Lamé’s Theorem. Consider some integers a, b P Z with a ą b ě 0 and suppose
that the Euclidean algorithm uses n divisions with remainder to compute gcdpa, bq. In this
case, Lamé’s Theorem says that we must have a ě Fn`1 and b ě Fn, where the Fibonacci
numbers are defined by F0 “ 0, F1 “ 1 and Fm “ Fm´1 ` Fm´2.

(a) Prove Lamé’s Theorem by induction on n, starting with n “ 0 and n “ 1.

(b) Prove by induction that for all n ě 2 we have

Fn ě φn´2 “

ˆ

1`
?

5

2

˙n´2

.

(c) Assuming that n ě 2, combine parts (a) and (b) to prove that we have n ă 5d ` 2,
where d is the number of decimal digits in b.

Before starting the proof, let me first clearly state the Euclidean algorithm. Given a pair
pa, bq with a ą b ě 0 we first define r0 :“ a and r1 :“ b then for all ri ‰ 0 we apply division
with remainder to obtain ri´1 “ qi`1ri ` ri`1 and 0 ď ri`1 ă ri. This produces a decreasing
sequence of remainders:

r0 ą r1 ą r2 ą ¨ ¨ ¨ ą rn ą rn`1 “ 0.

If rn ą rn`1 “ 0 then we say that the algorithm “terminates in n steps.” It is not important
for this problem, but we also conclude from Problem 2 that

gcdpa, bq “ gcdpr0, r1q “ gcdpr1, r2q “ ¨ ¨ ¨ “ gcdprn, rn`1q “ gcdprn, 0q “ rn.

(a): Base Cases. If the algorithm terminates in n “ 0 steps then we must have b “ 0, in
which case b “ 0 ě F0 and a ě 1 “ F1. If the algorithm terminates in n “ 1 steps then we
must have b ě 1 and a “ qb ` 0 for some quotient q ě 1, which implies that b ě 1 “ F1 and
a ě b` 1 ě 2 ě F2.

Induction Step. Now fix some integer n ě 2 and let us assume that:

‚ The Euclidean algorithm applied pa, bq terminates in n steps.

‚ Lamé’s Theorem holds for any pair when the algorithm terminates in n´ 1 steps.

Let r0 “ a and r1 “ b, as in the above discussion. Since the algorithm applied to pr0, r1q “
pa, bq terminates in n steps it follows that the algorithm applied to pr1, r2q “ pb, r2q terminates
in n´ 1 steps. Thus we may assume for induction that b ě Fn and r2 ě Fn´1. Finally, since
q2 ą 0 this implies that

a “ q2b` r2 ě b` r2 ě Fn ` Fn´1 “ Fn`1.
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(b): We observe that the golden ratio φ “ p1`
?

5q{2 satisfies φ2 “ φ` 1, and hence φn`2 “
φn`1 ` φn for all integers n ě 0. Observe that F2 “ 1 ě 1 “ φ0 and F3 “ 2 ě 1.618 “ φ1.
Now fix some integer n ě 4 and assume for induction that Fk ě φk´2 for all 2 ď k ă n. It
follows that

Fn “ Fn´1 ` Fn´2 ě φn´3 ` φn´4 “ φn´2.

(c): Suppose that the Euclidean algorithm applied to pa, bq terminates in n steps. We showed
in part (a) that b ě Fn and we showed in part (b) that Fn ě φn´2, hence b ě φn´2. Take the
logarithm base 10 of both sides to obtain

b ě φn´2

logpbq ě pn´ 2q logpφq

logpbq{ logpφq ` 2 ě n.

We observe that 1{ logpφq “ 4.785 ă 5. If d is the number of decimal digits in b then we also
have 10d´1 ď b ă 10d, which implies that d´ 1 ď logpbq ă d. It follows that

n ď
1

logpφq
logpbq ` 2 ă 5d` 2.

[Remark: Maybe this can be improved to n ď 5d with a bit more work.]


