Problem 1. Find the complete integer solution $x, y \in \mathbb{Z}$ to the following Diophantine equation: 1035x + 644y = 299.

Consider the set of integer vectors (x, y, z) satisfying 1035x + 644y = z. Beginning with the obvious triples $\mathbf{r}_1 := (1, 0, 1035)$ and $r_2 := (0, 1, 644)$, we perform a sequence of elementary operations corresponding to the Euclidean algorithm:

\mathbf{r}_2
\mathbf{r}_3
\mathbf{r}_4
\mathbf{r}_5
\mathbf{r}_6
\mathbf{r}_7

In particular, we see that gcd(1035, 644) = 23, and we note that $299 = 23 \cdot 13$. From theorems in the notes, we conclude that the complete solution is given by the linear combinations $13\mathbf{r}_7 + k\mathbf{r}_8 = (15 - 28k, -24 + 45k, 23)$ for all $k \in \mathbb{Z}$:

$$1035(15 - 28k) + 644(-24 + 45k) = 23.$$

Problem 2. Let $a, b, c, k \in \mathbb{Z}$ be any integers satisfying a = bk + c. In this case prove that

$$gcd(a, b) = gcd(b, c).$$

[Hint: Show that the sets of common divisors are the same: Div(a, b) = Div(b, c). It follows that the greatest element of each set is the same.]

To prove that the sets Div(a, b) and Div(b, c) are the same we must show (1) that $Div(a, b) \subseteq Div(b, c)$ and (2) $Div(b, c) \subseteq Div(a, b)$.

(1): Consider any element $d \in \text{Div}(a, b)$. By definition this means that a = da' and b = db' for some integers $a', b' \in \mathbb{Z}$. But then we also have

$$c = a - bk = da' - db'k = d(a' - b'k),$$

which implies that d|c and hence $d \in \text{Div}(b, c)$.

(2): Consider any element $d \in \text{Div}(b, c)$. By definition this means that b = db' and c = dc' for some integers $b', c' \in \mathbb{Z}$. But then we also have

$$a = bk + c = db'k + dc' = d(b'k + c'),$$

which implies that d|a and hence $d \in \text{Div}(a, b)$.

Problem 3. In this problem you will give a **non-constructive** proof of Bézout's identity. Consider two nonzero integers $a, b \in \mathbb{Z}$ and define the set

$$S = \{ax + by : x, y \in \mathbb{Z} \text{ and } ax + by > 0\}.$$

This set is non-empty because it contains |a|, hence it has a least element by well-ordering. Let $d \in S$ denote this least element.

- (a) Prove that d is a common divisor of a and b. [Hint: Let r be the remainder of a mod d. If $r \neq 0$ show that r is an element of S that is smaller than d.]
- (b) Continuing from (a), show that d is the **greatest** common divisor of a and b. [Hint: Let e be any common divisor of a and b. Use (a) to show that $e \leq d$.]

(a): By definition of d we know that d = ax + by > 0 for some integers $x, y \in \mathbb{Z}$. Since $d \neq 0$ we may divide a by d to obtain a = qd + r for some integers $q, r \in \mathbb{Z}$ satisfying $0 \leq r < d$. We will show that r = 0 and hence d|a. So let us assume for contradiction that r > 0. Then since

$$r = a - qd = a - q(ax + by) = a(1 - qx) + b(-qy) = a(\text{some integer}) + b(\text{some integer})$$

we find that r is an element of S that is strictly smaller than d. Contradiction. A similar argument shows that d|b.

(b): Suppose that $e \in \mathbb{Z}$ satisfies e|a and e|b. Say a = ea' and b = eb' for some integers $a', b' \in \mathbb{Z}$. Then since d = ax + by we have

$$d = ax + by = ea'x + eb'y = e(a'x + b'y).$$

Finally, since e|d and d > 0 we conclude that $e \leq d$ as desired.

Combining (a) and (b) shows that d = gcd(a, b). In particular, we have proved that there exist integers $x, y \in \mathbb{Z}$ satisfying ax + by = gcd(a, b). This is called Bézout's Identity.

Problem 4. Consider any non-zero integers $a, b, c \in \mathbb{Z}$. In class I defined the greatest common divisor gcd(a, b, c) as the greatest element of the following set of common divisors:

$$Div(a, b, c) = \{d \in \mathbb{Z} : d | a \text{ and } d | b \text{ and } d | c\}$$

Prove that the same concept can also be defined recursively, as follows:

$$gcd(a, b, c) = gcd(gcd(a, b), c).$$

[Hint: This comes down to the fact that any common divisor of a and b is a divisor of gcd(a, b), which can be proved using Bézout's identity.]

Let's say that d := gcd(a, b) with a = da' and b = db'. Following the idea in Problem 2, we will prove that the sets Div(a, b, c) and Div(d, c) are the same.

(1): First we assume that $e \in \text{Div}(d, c)$, so that e|d and e|c. Let's say d = ed'. But then we have a = da' = ed'a' and b = db' = ed'b', which implies that e|a and e|b. In summary, we have shown that $e \in \text{Div}(a, b, c)$.

(2): Conversely, suppose that we have $e \in \text{Div}(a, b, c)$ with a = ea'', b = eb'' and c = ec''. Our goal is to show that e|d and hence $e \in \text{Div}(d, c)$. But we know from Bézout's Identity (Problem 3) that there exist some $x, y \in \mathbb{Z}$ satisfying ax + by = d. It follows from this that

$$d = ax + by = ea''x + eb''y = e(a''x + b''y),$$

and hence e|d as desired.

Problem 5. Euclid's Lemma. For any integers $a, b, c \in \mathbb{Z}$ with a|bc and gcd(a, b) = 1, prove that a|c. [Hint: From Bézout's identity we know that ax + by = 1 for some $x, y \in \mathbb{Z}$. Multiply both sides by c.]

Since a|bc we have bc = ak for some $k \in \mathbb{Z}$. And from Bézout's Identity we have ax + by = 1 for some integers $x, y \in \mathbb{Z}$. Then multiplying both sides by c gives

$$ax + by = 1$$

$$c(ax + by) = c$$

$$acx + bcy = c$$

$$acx + aky = c$$

$$a(cx + ky) = c,$$

which implies that a|c.

Problem 6. Lamé's Theorem. Consider some integers $a, b \in \mathbb{Z}$ with $a > b \ge 0$ and suppose that the Euclidean algorithm uses n divisions with remainder to compute gcd(a, b). In this case, Lamé's Theorem says that we must have $a \ge F_{n+1}$ and $b \ge F_n$, where the Fibonacci numbers are defined by $F_0 = 0$, $F_1 = 1$ and $F_m = F_{m-1} + F_{m-2}$.

- (a) Prove Lamé's Theorem by induction on n, starting with n = 0 and n = 1.
- (b) Prove by induction that for all $n \ge 2$ we have

$$F_n \ge \phi^{n-2} = \left(\frac{1+\sqrt{5}}{2}\right)^{n-2}.$$

(c) Assuming that $n \ge 2$, combine parts (a) and (b) to prove that we have n < 5d + 2, where d is the number of decimal digits in b.

Before starting the proof, let me first clearly state the Euclidean algorithm. Given a pair (a, b) with $a > b \ge 0$ we first define $r_0 := a$ and $r_1 := b$ then for all $r_i \ne 0$ we apply division with remainder to obtain $r_{i-1} = q_{i+1}r_i + r_{i+1}$ and $0 \le r_{i+1} < r_i$. This produces a decreasing sequence of remainders:

$$r_0 > r_1 > r_2 > \dots > r_n > r_{n+1} = 0.$$

If $r_n > r_{n+1} = 0$ then we say that the algorithm "terminates in *n* steps." It is not important for this problem, but we also conclude from Problem 2 that

$$gcd(a,b) = gcd(r_0,r_1) = gcd(r_1,r_2) = \dots = gcd(r_n,r_{n+1}) = gcd(r_n,0) = r_n$$

(a): **Base Cases.** If the algorithm terminates in n = 0 steps then we must have b = 0, in which case $b = 0 \ge F_0$ and $a \ge 1 = F_1$. If the algorithm terminates in n = 1 steps then we must have $b \ge 1$ and a = qb + 0 for some quotient $q \ge 1$, which implies that $b \ge 1 = F_1$ and $a \ge b + 1 \ge 2 \ge F_2$.

Induction Step. Now fix some integer $n \ge 2$ and let us assume that:

- The Euclidean algorithm applied (a, b) terminates in n steps.
- Lamé's Theorem holds for any pair when the algorithm terminates in n-1 steps.

Let $r_0 = a$ and $r_1 = b$, as in the above discussion. Since the algorithm applied to $(r_0, r_1) = (a, b)$ terminates in n steps it follows that the algorithm applied to $(r_1, r_2) = (b, r_2)$ terminates in n - 1 steps. Thus we may assume for induction that $b \ge F_n$ and $r_2 \ge F_{n-1}$. Finally, since $q_2 > 0$ this implies that

$$a = q_2 b + r_2 \ge b + r_2 \ge F_n + F_{n-1} = F_{n+1}.$$

4

(b): We observe that the golden ratio $\phi = (1 + \sqrt{5})/2$ satisfies $\phi^2 = \phi + 1$, and hence $\phi^{n+2} = \phi^{n+1} + \phi^n$ for all integers $n \ge 0$. Observe that $F_2 = 1 \ge 1 = \phi^0$ and $F_3 = 2 \ge 1.618 = \phi^1$. Now fix some integer $n \ge 4$ and assume for induction that $F_k \ge \phi^{k-2}$ for all $2 \le k < n$. It follows that

$$F_n = F_{n-1} + F_{n-2} \ge \phi^{n-3} + \phi^{n-4} = \phi^{n-2}.$$

(c): Suppose that the Euclidean algorithm applied to (a, b) terminates in n steps. We showed in part (a) that $b \ge F_n$ and we showed in part (b) that $F_n \ge \phi^{n-2}$, hence $b \ge \phi^{n-2}$. Take the logarithm base 10 of both sides to obtain

$$b \ge \phi^{n-2}$$
$$\log(b) \ge (n-2)\log(\phi)$$
$$\log(b)/\log(\phi) + 2 \ge n.$$

We observe that $1/\log(\phi) = 4.785 < 5$. If d is the number of decimal digits in b then we also have $10^{d-1} \leq b < 10^d$, which implies that $d-1 \leq \log(b) < d$. It follows that

$$n \leqslant \frac{1}{\log(\phi)}\log(b) + 2 < 5d + 2.$$

[Remark: Maybe this can be improved to $n \leq 5d$ with a bit more work.]