Problem 1. Find the complete integer solution $x, y \in \mathbb{Z}$ to the following Diophantine equation:

$$
1035 x+644 y=299
$$

Problem 2. Let $a, b, c, x \in \mathbb{Z}$ be any integers satisfying $a=b x+c$. In this case prove that

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, c) .
$$

[Hint: Show that the sets of common divisors are the same: $\operatorname{Div}(a, b)=\operatorname{Div}(b, c)$. It follows that the greatest element of each set is the same.]

Problem 3. Consider any non-zero integers $a, b, c \in \mathbb{Z}$. In class I defined the greatest common divisor $\operatorname{gcd}(a, b, c)$ as the greatest element of the following set of common divisors:

$$
\operatorname{Div}(a, b, c)=\{d \in \mathbb{Z}: d \mid a \text { and } d \mid b \text { and } d \mid c\} .
$$

Prove that the same concept can also be defined recursively, as follows:

$$
\operatorname{gcd}(a, b, c)=\operatorname{gcd}(\operatorname{gcd}(a, b), c) .
$$

Problem 4. In this problem you will give a non-constructive proof of Bézout's identity. Consider two nonzero integers $a, b \in \mathbb{Z}$ and define the set

$$
S=\{a x+b y: x, y \in \mathbb{Z} \text { and } a x+b y>0\} .
$$

This set is non-empty because it contains $|a|$, hence it has a least element by well-ordering. Let $d \in S$ denote this least element.
(a) Prove that d is a common divisor of a and b. [Hint: Let r be the remainder of $a \bmod$ d. If $r \neq 0$ show that r is an element of S that is smaller than d.]
(b) Continuing from (a), show that d is the greatest common divisor of a and b. [Hint: Let e be any common divisor of a and b. Use (a) to show that $e \leqslant d$.]

Problem 5. Euclid's Lemma. For any integers $a, b, c \in \mathbb{Z}$ with $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, prove that $a \mid c$. [Hint: From Bézout's identity we know that $a x+b y=1$ for some $x, y \in \mathbb{Z}$. Multiply both sides by c.]

Problem 6. Lamé's Theorem. Consider some integers $a, b \in \mathbb{Z}$ with $a>b \geqslant 0$ and suppose that the Euclidean algorithm uses n divisions with remainder to compute $\operatorname{gcd}(a, b)$. In this case, Lamé's Theorem says that we must have $a \geqslant F_{n+1}$ and $b \geqslant F_{n}$, where the Fibonacci numbers are defined by $F_{0}=0, F_{1}=1$ and $F_{m}=F_{m-1}+F_{m-2}$.
(a) Prove Lamé's Theorem by induction on n, starting with $n=0$ and $n=1$.
(b) Prove by induction that for all $n \geqslant 2$ we have

$$
F_{n}>\phi^{n-2}=\left(\frac{1+\sqrt{5}}{2}\right)^{n-2}
$$

(c) Assuming that $n \geqslant 2$, combine parts (a) and (b) to prove that we have $n<5 d+2$, where d is the number of decimal digits in b.

