There are 10 parts and 5 pages. Each part is worth 3 points for a total of 30 points. No electronic devices are allowed. Anyone caught cheating will receive a score of zero.

Problem 1. (Division With Remainder) Assume that there exist integers $q, q', r, r' \in \mathbb{Z}$ with the properties

$$\begin{cases} 5 = 3q + r \\ 0 \leq r < 3 \end{cases} \quad \text{and} \quad \begin{cases} 5 = 3q' + r' \\ 0 \leq r' < 3. \end{cases}$$

In parts (a) and (b) you will prove that r = r'. So assume for contradiction that (r - r') > 0.

(a) Show that 3|(r-r') and then use the assumption (r-r') > 0 to prove that $3 \leq (r-r')$.

Proof. To see that 3|(r-r') note that

$$3q + r = 3q' + r'$$

 $r - r' = 3q' - 3q = 3(q' - q).$

If (r - r') > 0 then from the above equation we must also have (q' - q) > 0. Since q' - q is an integer this implies that

$$1 \leq (q' - q)$$

$$3 \leq 3(q' - q) = (r - r').$$

(b) Show that the inequalities $(0 \le r < 3)$, $(0 \le r' < 3)$ and $3 \le (r - r')$ imply a contradiction. This completes the proof that r = r'.

Proof. The inequality $0 \le r'$ implies that $r - r' \le r$. But then the inequalities r < 3 and $3 \le (r - r')$ give a contradiction:

$$3 \leqslant (r - r') \leqslant r < 3.$$

(c) Use the result of parts (a) and (b) to prove that there does **not exist** an integer $x \in \mathbb{Z}$ with the property 3x = 5.

Proof. Assume for contradiction that there exists such an integer $x \in \mathbb{Z}$. Then we have

{	$5 = 3x + 0$ $0 \le 0 < 3$	and	$\begin{cases} 5 = 3 \cdot 1 + 2\\ 0 \le 2 < 3. \end{cases}$
((• • • • • •

By parts (a) and (b) these conditions imply that 0 = 2, which is a contradiction.

Problem 2. (Linear Diophantine Equations)

(a) Use the Vector Euclidean Algorithm to find specific integers $x', y' \in \mathbb{Z}$ such that

33x' + 14y' = 1.

Solution. We consider the set of triples $(x, y, z) \in \mathbb{Z}^3$ such that 33x + 14y = z. We apply the Euclidean Algorithm starting with the two obvious triples (1, 0, 33) and (0, 1, 14) to obtain:

x	y	z
1	0	33
0	1	14
1	-2	5
-2	5	4
3	-7	1
-14	33	0

The second-to-last row gives us the specific solution 33(3) + 14(-7) = 1. [In particular, this tells us that 33 and 14 are coprime.]

(b) Find **all** integers $x, y \in \mathbb{Z}$ such that

$$33x + 14y = 0.$$

Solution. The equation 33x = -14y and Euclid's Lemma tells us that y is a multiple of 33 and x is a multiple of 14, say x = 14k and $y = 33\ell$ for $k, \ell \in \mathbb{Z}$. Then by substitution we have

$$33(14k) = -14(33\ell) 462k = -462\ell$$

and canceling 462 from both sides gives $\ell = -k$. We conclude that the complete solution to 33x + 14y = 0 is given by

$$(x, y) = (14k, -33k)$$
 for all $k \in \mathbb{Z}$.

(c) Combine your answers from parts (a) and (b) to find **all** integers $x, y \in \mathbb{Z}$ such that

33x + 14y = 2.

Solution. From part (a) we have 33(3) + 14(-7) = 1 and multiplying this by 2 gives the specific solution 33(6) + 14(-14) = 2. Then we add this to the complete solution of the homogeneous equation from part (b) to obtain the complete solution

$$(x, y) = (6, -14) + (14k, -33k)$$

= (6 + 14k, -14 - 33k) for all $k \in \mathbb{Z}$.

There are infinitely many different ways to express this solution.

//

Problem 3. (Modular Arithmetic)

(a) Compute the multiplicative inverse of the element $[14]_{33}$ in the ring $\mathbb{Z}/33\mathbb{Z}$.

Solution. From Problem 2 we have 33(3) + 14(-7) = 1 and reducing this equation mod 33 gives

$$[1]_{33} = [14(-7)]_{33} + [33(3)]_{33}$$

= $[14]_{33} \cdot [-7]_{33} + [33]_{33} \cdot [3]_{33}$
= $[14]_{33} \cdot [-7]_{33} + [0]_{33} \cdot [3]_{33}$
= $[14]_{33} \cdot [-7]_{33}.$

Hence the inverse is

$$[14^{-1}]_{33} = [-7]_{33} = [26]_{33}$$

(b) Use your answer from part (a) to find **all** integers $x \in \mathbb{Z}$ such that $[14x]_{33} = [2]_{33}$.

Solution. We multiply both sides of the equation $[14]_{33} \cdot [x]_{33} = [2]_{33}$ by the inverse of $[14]_{33}$ to obtain

$$[14]_{33} \cdot [x]_{33} = [2]_{33}$$
$$([26]_{33} \cdot [14]_{33}) \cdot [x]_{33} = [26]_{33} \cdot [2]_{33}$$
$$[1]_{33} \cdot [x]_{33} = [26]_{33} \cdot [2]_{33}$$
$$[x]_{33} = [52]_{33}$$
$$= [19]_{33}.$$

Hence the complete solution is x = 19 + 33k for all $k \in \mathbb{Z}$.

(c) Compute the value of Euler's totient function $\varphi(33)$.

Solution. The prime factorization of 33 is $33 = 3 \cdot 11$, so we have

 $\varphi(33) = \varphi(3) \cdot \varphi(11) = (3-1)(11-1) = 2 \cdot 10 = 20.$

(d) Use Euler's Totient Theorem to compute the remainder of $14^{19} \mod 33$. [Hint: Use parts (a) and (c) to compute the standard form the element $[14^{19}]_{33} \in \mathbb{Z}/33\mathbb{Z}$.]

Solution. Since gcd(14, 33) = 1, Euler's Totient Theorem tells us that $[14^{20}]_{33} = [14^{\varphi(33)}] = [1]_{33}$. Then we can multiply both sides of this equation by $[14^{-1}]_{33} = [26]_{33}$ to obtain

$$[14^{20}]_{33} = [1]_{33}$$
$$[14^{-1}]_{33} \cdot [14^{20}]_{33} = [14^{-1}]_{33} \cdot [1]_{33}$$
$$[14^{19}]_{33} = [14^{-1}]_{33}$$
$$= [26]_{33}.$$

We conclude that 14^{19} has remainder 26 modulo 33.

//