
MTH 505: Number Theory Spring 2017
Homework 4 Drew Armstrong

4.1. (Squares Mod 4). We say that an element rasn P Z{nZ is square if there exists an

element rxsn P Z{nZ such that rasn “ prxsnq
2
“ rx2sn.

(a) Prove that r0s4 and r1s4 are the only square elements of Z{4Z.

(b) Suppose that we have integers x, y, z P Z with the property

x2 ` y2 “ z2.

In this case use part (a) to show that x and y cannot both be odd. [Hint: The elements
rx2s4 and ry2s4 are square elements of Z{4Z. If x and y are both odd, show that the
sum rx2s4 ` ry

2s4 cannot be a square element of Z{4Z.]

Proof. (a): Here is a table showing the square of every element of Z{4Z:

ras4 r0s4 r1s4 r2s4 r3s4
ra2s4 r0s4 r1s4 r0s4 r1s4.

We observe from the second row of the table that the only square elements are r0s4 “ r0
2s4 “

r22s4 and r1s4 “ r1
2s3 “ r3

2s4.

(b): Suppose we have x, y, z P Z with x2 ` y2 “ z2. Reducing this equation mod 4 gives

rx2s4 ` ry
2s4 “ rz

2s4.

If both of x and y are odd, then rxs4 and rys4 must be in the set tr1s4, r3s4u. But then part
(a) implies that rx2s4 “ ry

2s4 “ r1s4 and hence

rz2s4 “ rx
2s4 ` ry

2s4 “ r1s4 ` r1s4 “ r2s4.

This contradicts the fact that r2s4 is not a square element of Z{4Z. �

4.2. (Fermat’s Last Theorem). In this exercise you will prove the easiest case of Fermat’s
Last Theorem, which is the only case that Fermat proved himself. That is, you will prove that
there do not exist integers px, y, zq P Z3 such that xyz ‰ 0 and

x4 ` y4 “ z4.

In fact, you will prove the stronger statement that the equation

(FLT) x4 ` y4 “ z2.

has no integer solution px, y, zq P Z3 with xyz ‰ 0.

(a) Suppose that (FLT) has a solution px, y, zq P Z3 with xyz ‰ 0. In this case prove that
(FLT) has a solution px1, y1, z1q P Z3 with x1y1z1 ‰ 0 and gcdpx1, y1q “ 1. [Hint: If p is
a common prime divisor of x and y show that px{p, y{p, z{p2q P Z3 is another solution.
Repeat until x and y have no common prime divisor.]

(b) (Fermat’s Method of Infinite Descent) Suppose that (FLT) has a solution px, y, zq P Z3

with xyz ‰ 0 and gcdpx, yq “ 1. In this case, prove that there exists a solution
px1, y1, z1q with x1y1z1 ‰ 0, gcdpx1, y1q “ 1 and 0 ă z1 ă |z|. [Hint: Since x4 ` y4 “
px2q2 ` py2q2 “ z2, Problem 4.1(b) says that x and y cannot both be odd, so assume
WLOG that x is odd and y is even. By replacing z with |z| we can also assume that



z ą 0. Then from the classification of Pythagorean triples (proved in class) there exist
integers u, v P Z with gcdpu, vq “ 1 and v ą 0 such that

x2 “ v2 ´ u2, y2 “ 2uv and z “ v2 ` u2.

Use 4.1(b) and the classification of Pythagorean triples (again!) to show that there
exist integers r, s P Z with gcdpr, sq “ 1 and s ą 0 such that

x “ s2 ´ r2, u “ 2rs and v “ s2 ` r2.

Use the fact pu{2qv “ py{2q2 to show that u{2 and v are perfect squares, then use the
fact rs “ u{2 to show that r and s are perfect squares. Finaly, show that we have
s “ px1q2, r “ py1q2 and v “ pz1q2 for some integers px1, y1, z1q P Z3 with x1y1z1 ‰ 0,
gcdpx1, y1q “ 1 and 0 ă z1 ă |z|.]

(c) Combine the results of (a) and (b) to finish the proof.

Proof. (a): Suppose that we have integers px, y, zq P Z3 such that x2 ` y2 “ z2 and xyz ‰ 0.
If px, yq “ p0, 0q then the equation z2 “ x2 ` y2 “ 0 implies that z “ 0 which contradicts the
fact that xyz ‰ 0, so we may assume that px, yq ‰ p0, 0q. Now suppose that p is any common
prime divisor of x and y with x “ px1 and y “ py1. Then we see that p divides z2 because

x2 ` y2 “ z2

ppx1q2 ` ppy1q2 “ z2

p2ppx1q2 ` py1q2q “ z2,

and from Euclid’s Lemma this implies that p divides z, say z “ pz1. Finally, since p ‰ 0 we
have

p2ppx1q2 ` py1q2q “ z2

p2ppx1q2 ` py1q2q “ ppz1q2

p2ppx1q2 ` py1q2q “ p2pz1q2

px1q2 ` py1q2 “ pz1q2.

If gcdpx1, y1q “ 1 then we are done. Otherwise, there exists a common prime divisor q of x1

and y1 with x1 “ qx2 and y1 “ qy2 and we can repeat the process to obtain

px2q2 ` py2q2 “ pz2q2

for some integer z2 P Z. I claim that this process must eventually stop. Indeed, since px, yq ‰
p0, 0q we can assume without loss of generality that x ą 0. If the process never stops then we
obtain an infinite decreasing sequence of positive integers

x ą x1 ą x2 ą ¨ ¨ ¨ ą 0,

which contradicts the Well-Ordering Principle.

(b): Assume that there exist integers px, y, zq P Z3 with x4 ` y4 “ z2 such that xyz ‰ 0 and
gcdpx, yq “ 1. Since px, yq ‰ 0 this implies that z2 ‰ 0 so we can assume without loss of
generality that z ě 1.

To begin, we observe that z2 “ x4 ` y4 “ px2q2 ` py2q2. From 4.1(b) this tells us that x2 and
y2 (hence also x and y) cannot both be odd. So let us assume without loss of generality that
x is odd and y is even. From the classification of Pythagorean triples (proved in class) we
conclude that there exist integers u, v P Z with gcdpu, vq “ 1 and v ě 1 such that

x2 “ v2 ´ u2, y2 “ 2uv and z “ v2 ` u2.



Since x is even, the equation x2`u2 “ v2 together with 4.1(b) tells us that u is even. Then the
classification of Pythagorean triples (again!) tells us that there exist r, s P Z with gcdpr, sq “ 1
and s ě 1 such that

x “ s2 ´ r2, u “ 2rs and v “ s2 ` r2.

Since gcdpu, vq “ 1 and since u is even we see that u{2 is an integer with gcdpu{2, vq “ 1.
Now observe that

´u

2

¯

v “
2uv

4
“
y2

4
“

´y

2

¯2
ě 1.

Since v ě 1 this implies that u ě 1. Furthermore, since pu{2qv is a perfect square and since
gcdpu{2, vq “ 1 the unique prime factorization1 of py{2q2 shows us that each of u{2 and v
is a perfect square. Then since

rs “
u

2
ě 1

with s ě 1 we see that r ě 1, and since rs “ u{2 is a perfect square with gcdpr, sq “ 1 we
conclude that each of r and s is a perfect square. We have shown that there exist integers
x1, y1, z1 P Z such that

s “ px1q2, r “ py1q2 and v “ pz1q2

and hence px1q4 ` py1q4 “ s2 ` r2 “ v “ pz1q2. It only remains to show that x1y1z1 ‰ 0,
gcdpx1, y1q “ 1 and 0 ă z1 ă z. The fact that x1y1z1 ‰ 0 follows from the fact y ‰ 0 and the
equation

y2 “ 2uv “ 2p2rsqv “ 4px1y1z1q2.

To see that gcdpx1, y1q “ 1, observe that any common divisor of x1 and y1 is also a common
divisor of s “ px1q2 and r “ py1q2 and hence 1 ď gcdpx1, y1q ď gcdpr, sq “ 1. Finally, to see
that z1 ă z first observe that the inequalities 1 ď z1 and 1 ď v imply that z1 ď pz1q2 and
v ď v2. Since y ‰ 0 and y2 “ 2uv we must also have u ‰ 0 and it follows that

z1 ď pz1q2 “ v ď v2 ă v2 ` u2 “ z

as desired.

(c): Here is the complete proof. Assume for contradiction that there exist integers
px, y, zq P Z3 such that xyz ‰ 0 and x4 ` y4 “ z4. If z “ 0 then this implies that
px, yq “ p0, 0q which contradicts the fact that px, y, zq ‰ p0, 0, 0q. Furthermore, if px, yq “ p0, 0q
then we obtain the contradiction z “ 0. So we can assume that px, yq ‰ p0, 0q and z ‰ 0.

Now observe that we have x4 ` y4 “ pz1q2 where z1 “ z2 ě 1. By part (a) this implies
that there exist integers px1, y1, z2q P Z3 with px1q4 ` py1q4 “ pz2q2 such that x1y1z2 ‰ 0 and
gcdpx1, y1q “ 1. We can also assume without loss of generality that z2 ě 1. Then from part
(b) we know that there exist integers px2, y2, z3q P Z3 such that px2q4 ` py2q4 “ pz3q2 with
x2y2z3 ‰ 0, gcdpx2, y2q “ 1 and 1 ď z3 ă z2. Finally, we observe that this process can be
repeated indefinitely to obtain an infinite decreasing sequence of positive integers

z ě z1 ě z2 ą z3 ą z4 ą ¨ ¨ ¨ ą 0,

which contradicts the Well-Ordering Principle. �

[Remark: This is by far the easiest case of Fermat’s Last Theorem. Euler gave a more involved
proof for the exponent 3 which depends on the fact that the commutative ring Zre2πi{3s has
unique prime factorzation. Later it was realized that a similar proof works for exponent n whenever
the ring Zre2πi{ns has unique prime factorization. Unfortunately, Kummer observed that unique

1This is a key step. I’ll discuss it in the remark after the proof.



factorization fails in general. Eventually Kronecker and Dedekind were able to restore unique
factorization by replacing “numbers” with “ideals”. Unfortunately too much structure was lost to
recover the proof of FLT. The proof had to wait another hundred years for new methods.]

4.3. (Rational Points on a Hyperbola). In this problem you will find the complete
rational solution pα, βq P Q2 to the equation

(Hyp) 4α2 ´ 4αβ ´ 7β2 ´ 16β ´ 9 “ 0.

(a) Find an invertible affine transformation with rational coefficients to rewrite (Hyp) in
the equivalent form

x2 ´ 2y2 “ 1.

(b) Draw a picture of the hyperbola x2 ´ 2y2 “ 1 with a line of slope t going through the
point p´1, 0q. Let pxt, ytq be the coordinates of the other point of intersection.

(c) Compute formulas for the coordinates of pxt, ytq in terms of t. Use your formulas to
show that

t P Q ðñ pxt, ytq P Q2.

(d) Substitute t “ u{v for coprime integers u, v P Z with v ą 0 to find the general formula
for rational points on the hyperbola x2 ´ 2y2 “ 1.

(e) Invert your affine transformation from part (a) to find the general formula for rational
points on the original hyperbola (Hyp).

Proof. (a): Let’s do it from scratch using Hermite reduction. First we consider the quadratic
form

4α2 ´ 4αβ ´ 7β2 “
`

α β
˘

ˆ

4 ´2
´2 ´7

˙ˆ

α
β

˙

“ αTAα.

We want to find a rational invertible matrix P such that P TAP is diagonal. To do this we
perform a sequence of simultaneous row/column operations on the augmented matrix:

¨

˚

˚

˝

4 ´2
´2 ´7

1 0
0 1

1 0
0 1

˛

‹

‹

‚

Ñ

¨

˚

˚

˝

4 0
0 ´8

1 0
1{2 1

1 1{2
0 1

˛

‹

‹

‚

Ñ

¨

˚

˚

˝

1 0
0 ´2

1{2 0
1{4 1{2

1{2 1{4
0 1{2

˛

‹

‹

‚

.

It follows from this computation that
ˆ

1{2 0
1{4 1{2

˙ˆ

4 ´2
´2 ´7

˙ˆ

1{2 1{4
0 1{2

˙

“

ˆ

1 0
0 ´2

˙

.

Thus we will make a change of variables of the form
ˆ

α
β

˙

“

ˆ

1{2 1{4
0 1{2

˙ˆ

x
y

˙

`

ˆ

u
v

˙

“

ˆ

x{2` y{4` u
y{2` v

˙

for some rational numbers u, v P Q. In order to determine u and v, we substitute α “

x{2` y{4` u and β “ y{2` v into (Hyp) to obtain

4α2 ´ 4αβ ´ 7β2 ´ 16β ´ 9 “ 0

4px{4` y{8` uq2 ´ 4px{4` y{8` uqpy{4` vq ´ 7py{4` vq2 ´ 16py{4` vq ´ 9 “ 0

x2 ´ 2y2 ` p4u´ 2vqx´ p8` 8vqy ` p4u2 ´ 4uv ´ 7v2 ´ 16u´ 9q “ 0.



Our goal is to choose u and v so that p4u ´ 2vq “ 0 and p8 ` 8vq “ 0. The second equation
implies v “ ´1 and then the first equation implies u “ ´1{2. In summary, by making the
rational invertible affine change of variables

ˆ

α
β

˙

“

ˆ

1{2 1{4
0 1{2

˙ˆ

x
y

˙

`

ˆ

´1{2
´1

˙

“

ˆ

x{2` y{4´ 1{2
y{2´ 1

˙

we obtain the equivalent equation

x2 ´ 2y2 ` p4u´ 2vqx´ p8` 8vqy ` p4u2 ´ 4uv ´ 7v2 ´ 16u´ 9q “ 0

x2 ´ 2y2 ` 0x` 0y ` 4p´1{2q2 ´ 4p´1{2qp´1q ´ 7p´1q2 ´ 16p´1{2q ´ 9 “ 0

x2 ´ 2y2 ´ 1 “ 0

x2 ´ 2y2 “ 1,

as desired.

(b): So let’s solve the equation x2´2y2 “ 1. Geometrically this is a hyperbola in the real x, y-
plane. We consider the line of slope t through the (rational) point p´1, 0q on the hyperbola
and we let pxt, ytq denote the other point of intersection as in the following beautiful picture:

(c): To compute the coordinates of pxt, ytq we substitute the equation of the line y “ tpx` 1q
into the equation of the hyperbola x2 ´ 2y2 “ 1 to obtain

x2 ´ 2y2 “ 1

x2 ´ 2t2px` 1q2 “ 1

x2 ´ 2t2px2 ` 2x` 1q “ 1

p1´ 2t2qx2 ` p´4t2qx` p´1´ 2t2q “ 0.



Then we use the quadratic formula:

x “
4t2 ˘

a

p´4t2q2 ´ 4p1´ 2t2qp´1´ 2t2q

2p1´ 2t2q

“
4t2 ˘

?
16t4 ` 4´ 16t4

2p1´ 2t2q

“
4t2 ˘

?
4

2p1´ 2t2q

“
4t2 ˘ 2

2p1´ 2t2q

“
2t2 ˘ 1

1´ 2t2

“ ´1 or
1` 2t2

1´ 2t2
.

The value x “ ´1 corresponds to the point px, yq “ p´1, 0q so we conclude that xt “ p1 `
2t2q{p1´ 2t2q. Then we substitute into the equation of the line to obtain

yt “ tpxt ` 1q “ t

ˆ

1` 2t2

1´ 2t2
`

1´ 2t2

1´ 2t2

˙

“
2t

1´ 2t2
.

Finally, it follows from the equation yt “ tpxt ` 1q that

pxt, ytq P Q2 ùñ t P Q

and it follows from the equation

pxt, ytq “

ˆ

1` 2t2

1´ 2t2
,

2t

1´ 2t2

˙

that

t P Q ùñ pxt, ytq P Q2.

Indeed, we observe that the denominators never vanish because t “ 1{
?

2 is irrational.

(d): From part (c) we see that every rational point on the hyperbola x2 ´ 2y2 “ 1 has the
form pxt, ytq for some rational number t P Q. By writing t in lowest terms we can assume
that t “ u{v for some unique integers u, v P Z with gcdpu, vq “ 1 and v ě 1. Then we can
substitute this into the formula for pxt, ytq to obtain

pxt, ytq “

ˆ

1` 2t2

1´ 2t2
,

2t

1´ 2t2

˙

“

ˆ

1` 2pu{vq2

1´ 2pu{vq2
,

2t

1´ 2pu{vq2

˙

“

ˆ

v2 ` 2u2

v2 ´ 2u2
,

2uv

v2 ´ 2u2

˙

.

I won’t bother to check if these fractions are in lowest terms.

(e): Finally, we invert the affine transformation from part (a) to obtain the complete rational
solution to the equation (Hyp). To be specific, for each rational number t “ u{v in lowest



terms we obtain the rational point

pαt, βtq “ pxt{2` yt{4´ 1{2, yt{2´ 1q

“

ˆ

up4u` vq

2pv2 ´ 2u2q
,
2u2 ` uv ´ 2v2

v2 ´ 2u2

˙

.

Again, I won’t check if these fractions are in lowest terms. �

[Remark: Suppose we wanted to find all integer solutions px, yq P Z to the equation x2´2y2 “ 1.
From the answer to part (d), this problem is equivalent to determining all coprime integers gcdpu, vq
with v ě 1 such that

pv2 ´ 2u2q|pv2 ` 2u2q and pv2 ´ 2u2q|p2uvq.

Equivalently, we require that pv2 ´ 2u2q divides the greatest common divisor of pv2 ` 2u2q and
2uv. We will need some new ideas to solve this.]

4.4 (A Hyperbola With No Rational Points). If we could find just one rational point
on the hyperbola x2 ´ 2y2 “ 3 then we would obtain infinitely many rational points as in
Problem 4.3. However, we will see that there are no rational points.

(a) Assume that there exist rational numbers px, yq P Q2 such that x2 ´ 2y2 “ 3. In this
case prove that there exist integers pa, b, cq P Z3 with no common factor such that

a2 ´ 2b2 “ 3c2.

(b) With a, b, c P Z as in part (a), prove that gcdpa, 3q “ 1.

(c) Reduce the equation a2 ´ 2b2 “ 3c2 mod 3 to get

ra2s3 “ r2b
2s3

r2s3 ¨ ra
2s3 “ r2s3 ¨ r2b

2s3

r2s3 ¨ ra
2s3 “ rp2bq

2s3.

Now part (b) implies that we can divide both sides by ra2s3 to get

r2s3 “ rp2bq
2s3 ¨ ra

´2s3 “
`

r2bs3 ¨ ra
´1s3

˘2
.

Use this to find a contradiction.

Proof. (a): Suppose that we have px, yq P Q2 such that x2 ´ 2y2 “ 3. By finding a common
denominator we can write px, yq “ pa{c, b{cq for some integers pa, b, cq P Z3 with c ě 1. Then
substituting gives

pa{cq2 ´ 2pb{cq2 “ 3

a2 ´ 2b2 “ 3c2.

Finally, let λ “ gcdpa, b, cq with a “ λa1, b “ λb1 and c “ λc1. Then we have gcdpa1, b1, c1q “ 1
and since λ ‰ 0 we obtain

a2 ´ 2b2 “ 3c2

pλa1q2 ´ 2pλb1q2 “ 3pλc1q2

λ2ppa1q2 ´ 2pb1q2q “ λ23pc1q2

pa1q2 ´ 2pb1q2 “ 3pc1q2



as desired.

(b): I don’t want to keep writing the “primes”, so let’s assume that a2 ´ 2b2 “ 3c2 with
gcdpa, b, cq “ 1. Since 3 is prime we observe that gcdpa, 3q ‰ 1 if and only if 3|a. So let us
assume for contradiction that 3|a, say a “ 3a1. Then the equation

a2 ´ 2b2 “ 3c2

p3a1q2 ´ 2b2 “ 3c2

3p3pa1q2 ´ c2q “ 2b2

says that 3|2b2 and it follows from Euclid’s Lemma that 3|b, say b “ 3b1. Substituting gives

a2 ´ 2b2 “ 3c2

p3a1q2 ´ 2p3b1q2 “ 3c2

9ppa1q2 ´ 2pb1q2q “ 3c2

3ppa1q2 ´ 2pb1q2q “ c2,

which says that 3|c2 and hence 3|c by Euclid’s Lemma. We have shown that 3 is a common
divisor of a, b and c, which contradicts the fact that gcdpa, b, cq “ 1.

(c): Assume for contradiction that there exists a rational point px, yq P Q2 on the hyperbola
x2 ´ 2y2 “ 3. Then part (a) says that there exist coprime integers gcdpa, b, cq “ 1 such that
a2 ´ 2b2 “ 3c2 and part (b) says that gcdpa, 3q “ 1. In particular, this says that the element
ras3 P Z{3Z and hence also the element ra2s3 P Z{3Z is invertible. By reducing the equation
a2 ´ 2b2 “ 3c2 mod 3 we obtain

ra2 ´ 2b2s3 “ r3c
2s3

ra2s3 ´ r2b
2s3 “ r0s3

ra2s3 “ r2b
2s3

r1s3 “ r2b
2s3 ¨ ra

´2s3

r2s3 ¨ r1s3 “ r2s3 ¨ r2b
2s3 ¨ ra

´2s3

r2s3 “ rp2bq
2s3 ¨ rpa

´1q2s3

r2s3 “
`

r2bs3 ¨ ra
´1s3

˘2
.(˚)

I don’t know what the element r2bs3 ¨ ra
´1s3 P Z{3Z is, but it certainly exists. Then equation

(˚) tells us that r2s3 is a square element of Z{3Z. But this is false because there are only three
elements of Z{3Z and none of them is a square root of r2s3:

r02s3 “ r0s3 ‰ r2s3, r12s3 “ r1s3 ‰ r2s3 and r22s3 “ r1s3 ‰ r2s3.

�

[Remark: A generalization of this argument can be used to show the following. Fix squarefree and
pairwise coprime integers a, b, c P Z and suppose that we have rational numbers x, y P Q such
that ax2 ` by2 ` c “ 0. Then we find that the following elements are square:

r´absc P Z{cZ, r´acsb P Z{bZ and r´bcsa P Z{aZ.
It is a celebrated theorem of Legendre (1785) that these conditions are also sufficient for the
existence of a rational solution. We will prove this in class.]


