MTH 505: Number Theory Spring 2017
Homework 3 Drew Armstrong

3.1. (Infinitely Many Primes). Prove that there are infinitely many positive prime inte-
gers. That is, prove that the sequence

pP1 = 2’}72 = 37p3 = 5»]94 = 77p5 = 11>p6 = 137 ..

never stops. [Hint: Assume for contradiction that the sequence stops, i.e., assume that the
numbers p1,po,...,pr are all of the positive prime numbers. Now consider the number
N :=pip2---pr + 1. We know from class that the number N has a positive prime factor p|N.
Prove that this prime p is not in our list.]

Proof. Assume for contradiction that there are only finitely many positive primes and denote
them by pi1,p2,...,pr. Now consider the number

N:=pip2---pp+ 1

Since N > 2 we know from class that N has a positive prime factor, say p|N. By the
assumption that pi,ps, ..., p; are all of the primes we must have p; = p for some 7. But since
p|N we know that [N], = [0], and from the definition of N we have [N],, = [1],, for all 1.
Thus if p = p; for some 7 then we obtain the equation

[O]p = [N]p = [1]1)7

which contradicts the uniqueness of remainders. O

3.2. (Infinitely Many Primes = 3 Mod 4). In this exercise you will show that the
sequence

3,7,11,15,19,23,27,...
contains infinitely many prime numbers.

(a) Consider a positive integer n > 1. If [n]s = [3]4, prove that n has a positive prime
factor p|n such that [p]s = [3]4. [Hint: We know from class that n can be written as
a product of positive primes. What if none of them are in the set [3]47]

(b) Assume for contradiction that there are only finitely many positive primes in [3]4 and
call them

3<pr <p2<---<pg.

Now use part (a) to obtain a contradiction. [Hint: Define the number N := 4pips - - - p+
3. By part (a) this number has a positive prime factor p € [3]4. Show that the prime
p is not in your list.]

Proof. (a): Let n > 1 and suppose that [n]s = [3]4. We know from class that n can be written
as a finite product of positive primes, say n = p1ps - - px. The assumption [n]s = [3]4 implies
that n is odd so all of the primes p; must also we odd. In other words, for each i we have



either [p;]a = [1]4 or [pi]a = [3]. Finally, we assume for contradiction that [p;]4 = [1]4 for all
. Then we obtain

[n]4

[p1p2 - - prla
= [p1la- [p2la- - [prla

[1]a - [1]a---[1]4

[1]a,

which contradicts the fact that [n]s = [3]4. We conclude that there exists some i such that
[pi]la = [3]4 as desired.

I

(b): Assume for contradiction that there are finitely many positive primes in the set [3]4 and
denote them by
3<p1 <p2 < <Pk

Now consider the number N := 4pips - - - pr + 3. Since [N]4 = [3]4 we know from part (a) that
there exists a positive prime factor p|N such that [p]s = [3]4. I claim that p # 3. Indeed,
if 3|V then we would also have 3|4p1ps - - - pr and by Euclid’s Lemma this would imply that
3|p; for some i. But since p; is prime and p; > 3 this is a contradiction. Now since p # 3 is
a positive prime in the set [3]4 we must have p = p; for some i. But since p| N we know that
[N], = [0], and from the definition of N we have [N],, = [3],, for all <. Thus if p = p; for
some ¢ then we obtain the equation

[O]p = [N]p = [3]177
which contradicts the uniqueness of remainders because p > 3. U

3.3. (Infinitely Many Primes = 1 Mod 4). In this exercise you will show that the
sequence
1,5,9,13,17,21,25,.. .
contains infinitely many prime numbers.
(a) Assume for contradiction that there are only finitely many primes in this list and call
them pi, pa,...,pr. Now define the numbers
T = 2pip2 - D,
N =2+ 1.
Show that N € [1]4 and that N € [1],, for all 4.
(b) If N is prime, show that part (a) leads to a contradiction.

(c¢) If N is not prime then there exists a positive prime divisor ¢|/N. Use Euclids Totient
Theorem to prove that g € [1]4 and then show that part (a) still leads to a contradiction.
[Hint: Show that 4 is the multiplicative order of x mod ¢ and then use the fact that

o(q) =q—1]

Proof. (a): Note that 2|z. From Euclid’s Lemma (or unique factorization) this implies that
4|22 and hence [2%]4 = [0]4. Then we find that

[Nla = [2® + 1]s = [#%]a + [1]a = [0]4 + [1]2 = [1]4

as desired. Note also that p;|z for each i, so that p;|x? and hence [2%],, = [0]p,. Then a similar
argument gives [N]p, = [1],,.



(b): Suppose that N is prime. By part (a) we know that [N]4 = [1]4 which implies that we
must have N = p; for some i. But then we would also have from part (a) that

[1]n = [1]p; = [N]p, = [N]v = [O]n,
which contradicts the uniqueness of remainders.

(c): If N is not prime then we still know that N has a prime factor, say ¢|N, and since N
is odd we can assume that ¢ > 2. In this case I claim that x has multiplicative order 4 mod
g. Indeed, we can reduce the equation 2 + 1 = N mod ¢ to obtain

This implies that the multiplicative order o4(z) divides 4. But we also know that [z], # [1],
since otherwise we would have

[¢—1]g = [-1]g = [2°]y = ([2]9)* = ([1]9)* = [Lg,
which contradicts the uniqueness of remainders because ¢ > 2. We conclude that o4(z) = 4.

In general, Euler’s Totient Theorem says that the multiplicative order o,4(x) divides the value
of the totient function ¢(g). Since ¢ is prime this means that 4 divides ¢(q) = ¢—1, and hence

[¢]a = [1]4. Since the list p1,p2, ..., pr contains all positive primes of the form [1]4 we must
have ¢ = p; for some p;. But then from part (a) we would have [N], = [1], which contradicts
the fact that ¢ divides N. O

[We have seen that there are infinitely many positive primes in the sets [1]2, [1]4 and [3]4. More
generally, it is a theorem of Dirichlet (1837) that there exist infinitely many primes in the set
[a], for any coprime integers ged(a,n) = 1. It turns out that this theorem is very difficult to
prove; Dirichlet’s proof used complex analysis and gave birth to the subject of “analytic number
theory”. We can rephrase the result by saying that for integers gcd(a, n) = 1, the linear polynomial
f(x) = nx + a takes infinitely many prime values. For quadratic polynomials the problem is even
harder. Landau's 4th Problem (1914) asks whether there are infinitely many primes of the form
22 + 1. It is still open.]

3.4. (Useful Lemma). For all integers a, b, c € Z with ged(a,b) = 1 show that
(ale Able) = (ablc).
[Hint: Use the fact that ged(a,b) = 1 to write ax + by = 1 for some z,y € Z.]

Proof. Consider integers a,b,c € Z with ged(a,b) = 1 and assume that we have a|c and b|c,
say ¢ = ac’ and ¢ = bc”. Since ged(a,b) = 1 the Euclidean Algorithm says that there exist



integers x,y € Z such that ax + by + 1. Then multiplying this equation by ¢ gives
1=ax+ by
¢ = claz + by)
c = cax + cby
c = (bd")(az) + (ac’)(by)

= (ab)(c"z) + (ad)(c'y)
c = (ab)("z + y),
which implies that (ab)|c as desired. O

3.5. (Generalization of Euler’s Totient Theorem). Consider a positive integer n with
prime factorization
n=pi'pyps’ -
Now consider any non-negative integers e, f € N with the properties
e ¢; < e for all 4,

o o(pi")|f for all i.

In this case prove that [af*¢], = [a®], for all integers a € Z. In the special case that
ged(a,n) = 1 we could then multiply both sides by the inverse [a~¢],, to obtain [af], = [1].,
which is just another way to state Euler’s Totient Theorem. [Hint: For all i we have either
pila or p; t a. In the former case show that pi'|a® and in the latter case use Euler’s Totient
Theorem to show that p{’|(a — 1). In either case we have p{’|a®(a/ — 1). Now use 3.4 to
conclude that n|a®(af —1).]

Proof. Consider the factor p{* of n. Assuming that e; < e and go(pl ), our goal is to show
that pS*|a® (af — 1) for all integers a € Z. Then since the factors p;* and p are coprime for
i # j we can use the result of Problem 3.4 to conclude that n|a®(af — 1) = (a/*¢ — a¢) and
hence

[a” ], = [a%]n
for all integers a € Z.

There are two cases: (1) If p;|a then by Euclid’s Lemma (or unique factorization) we must
have p;*|a®, and since e; < e we must have a®|a®. Putting the two together gives p;|a® and
hence p§i|a®(a’ — 1). (2) If p; { a then since p; is prime we must have ged(a,p{’) = 1. In
this case Euler’s Totient Theorem says that the multiplicative order o0;(a) of @ mod p5* divides
©(p;"). Now the assumption ¢(p;*)|f implies that we have f = o0;(a) - k for some k € N and
hence

[af],e0 = [a%(F] i = ([aw(a)]p?)k - ([1]p;i)k = 1],

In other words, we have p{’|(a’ — 1), which implies that p{*|a®(a’ — 1) as desired. O

[We proved in class that ¢(n) = [, ¢(p;*), hence for any non-negative integer k = 0, the integer
f = p(n)k satisfies the assumption of Problem 3.5. (This motivates our use of the letter “f".)
Then the result of 3.5 implies that we have

[aw(n)k+e]n = [a“]n



for all integers a € Z and for all non-negative integers k, e € N such that e; < e for all 7.]

3.6. (RSA Cryptosystem). Consider prime numbers p, q € Z. Since ¢(pq) = (p—1)(¢—1),

Euler’s Totient Theorem tells us that for all integers a with ged(a,pg) = 1 we have
[a(pil)(qil)]pq = [1]pq

and then multiplying both sides by [a]p, gives

(RSA) [a(pil)(qil)ﬂ]pq = [a]pg-

Now use 3.5 to show that the second equation (RSA) still holds when gecd(a,pg) # 1, even
though the first equation does not.

Proof. There is not much to do here. Let a be any integer and let n = p'q'. Then the result
of 3.5 implies that for any non-negative integers e, f € N such that 1 <eand (p—1)(¢—1) =
©(n)|f we have [a/*¢],, = [a],. In other words, for all integers a € Z and for all e > 1 and

k > 0 we have
[a(p_l)(q_l)k+e]pq = [ae]pq-

[We will see in class what this equation is good for; the title of Problem 3.6 is a hint.]



