
MTH 505: Number Theory Spring 2017
Homework 3 Drew Armstrong

3.1. (Infinitely Many Primes). Prove that there are infinitely many positive prime inte-
gers. That is, prove that the sequence

p1 “ 2, p2 “ 3, p3 “ 5, p4 “ 7, p5 “ 11, p6 “ 13, . . .

never stops. [Hint: Assume for contradiction that the sequence stops, i.e., assume that the
numbers p1, p2, . . . , pk are all of the positive prime numbers. Now consider the number
N :“ p1p2 ¨ ¨ ¨ pk ` 1. We know from class that the number N has a positive prime factor p|N .
Prove that this prime p is not in our list.]

Proof. Assume for contradiction that there are only finitely many positive primes and denote
them by p1, p2, . . . , pk. Now consider the number

N :“ p1p2 ¨ ¨ ¨ pk ` 1.

Since N ě 2 we know from class that N has a positive prime factor, say p|N . By the
assumption that p1, p2, . . . , pk are all of the primes we must have pi “ p for some i. But since
p|N we know that rN sp “ r0sp and from the definition of N we have rN spi “ r1spi for all i.
Thus if p “ pi for some i then we obtain the equation

r0sp “ rN sp “ r1sp,

which contradicts the uniqueness of remainders. �

3.2. (Infinitely Many Primes ” 3 Mod 4). In this exercise you will show that the
sequence

3, 7, 11, 15, 19, 23, 27, . . .

contains infinitely many prime numbers.

(a) Consider a positive integer n ě 1. If rns4 “ r3s4, prove that n has a positive prime
factor p|n such that rps4 “ r3s4. [Hint: We know from class that n can be written as
a product of positive primes. What if none of them are in the set r3s4?]

(b) Assume for contradiction that there are only finitely many positive primes in r3s4 and
call them

3 ă p1 ă p2 ă ¨ ¨ ¨ ă pk.

Now use part (a) to obtain a contradiction. [Hint: Define the number N :“ 4p1p2 ¨ ¨ ¨ pk`
3. By part (a) this number has a positive prime factor p P r3s4. Show that the prime
p is not in your list.]

Proof. (a): Let n ě 1 and suppose that rns4 “ r3s4. We know from class that n can be written
as a finite product of positive primes, say n “ p1p2 ¨ ¨ ¨ pk. The assumption rns4 “ r3s4 implies
that n is odd so all of the primes pi must also we odd. In other words, for each i we have



either rpis4 “ r1s4 or rpis4 “ r3s. Finally, we assume for contradiction that rpis4 “ r1s4 for all
i. Then we obtain

rns4 “ rp1p2 ¨ ¨ ¨ pks4

“ rp1s4 ¨ rp2s4 ¨ ¨ ¨ rpks4

“ r1s4 ¨ r1s4 ¨ ¨ ¨ r1s4

“ r1s4,

which contradicts the fact that rns4 “ r3s4. We conclude that there exists some i such that
rpis4 “ r3s4 as desired.

(b): Assume for contradiction that there are finitely many positive primes in the set r3s4 and
denote them by

3 ă p1 ă p2 ă ¨ ¨ ¨ ă pk.

Now consider the number N :“ 4p1p2 ¨ ¨ ¨ pk`3. Since rN s4 “ r3s4 we know from part (a) that
there exists a positive prime factor p|N such that rps4 “ r3s4. I claim that p ‰ 3. Indeed,
if 3|N then we would also have 3|4p1p2 ¨ ¨ ¨ pk and by Euclid’s Lemma this would imply that
3|pi for some i. But since pi is prime and pi ą 3 this is a contradiction. Now since p ‰ 3 is
a positive prime in the set r3s4 we must have p “ pi for some i. But since p|N we know that
rN sp “ r0sp and from the definition of N we have rN spi “ r3spi for all i. Thus if p “ pi for
some i then we obtain the equation

r0sp “ rN sp “ r3sp,

which contradicts the uniqueness of remainders because p ą 3. �

3.3. (Infinitely Many Primes ” 1 Mod 4). In this exercise you will show that the
sequence

1, 5, 9, 13, 17, 21, 25, . . .

contains infinitely many prime numbers.

(a) Assume for contradiction that there are only finitely many primes in this list and call
them p1, p2, . . . , pk. Now define the numbers

x :“ 2p1p2 ¨ ¨ ¨ pk,

N :“ x2 ` 1.

Show that N P r1s4 and that N P r1spi for all i.

(b) If N is prime, show that part (a) leads to a contradiction.

(c) If N is not prime then there exists a positive prime divisor q|N . Use Euclids Totient
Theorem to prove that q P r1s4 and then show that part (a) still leads to a contradiction.
[Hint: Show that 4 is the multiplicative order of x mod q and then use the fact that
ϕpqq “ q ´ 1.]

Proof. (a): Note that 2|x. From Euclid’s Lemma (or unique factorization) this implies that
4|x2 and hence rx2s4 “ r0s4. Then we find that

rN s4 “ rx
2 ` 1s4 “ rx

2s4 ` r1s4 “ r0s4 ` r1s4 “ r1s4

as desired. Note also that pi|x for each i, so that pi|x
2 and hence rx2spi “ r0spi . Then a similar

argument gives rN spi “ r1spi .



(b): Suppose that N is prime. By part (a) we know that rN s4 “ r1s4 which implies that we
must have N “ pi for some i. But then we would also have from part (a) that

r1sN “ r1spi “ rN spi “ rN sN “ r0sN ,

which contradicts the uniqueness of remainders.

(c): If N is not prime then we still know that N has a prime factor, say q|N , and since N
is odd we can assume that q ą 2. In this case I claim that x has multiplicative order 4 mod
q. Indeed, we can reduce the equation x2 ` 1 “ N mod q to obtain

rx2 ` 1sq “ rN sq

rx2sq ` r1sq “ r0sq

rx2sq “ r´1sq

prx2sqq
2 “ pr´1sqq

2

rx4sq “ r1sq.

This implies that the multiplicative order oqpxq divides 4. But we also know that rxsq ‰ r1sq
since otherwise we would have

rq ´ 1sq “ r´1sq “ rx
2sq “ prxsqq

2 “ pr1sqq
2 “ r1sq,

which contradicts the uniqueness of remainders because q ą 2. We conclude that oqpxq “ 4.

In general, Euler’s Totient Theorem says that the multiplicative order oqpxq divides the value
of the totient function ϕpqq. Since q is prime this means that 4 divides ϕpqq “ q´1, and hence
rqs4 “ r1s4. Since the list p1, p2, . . . , pk contains all positive primes of the form r1s4 we must
have q “ pi for some pi. But then from part (a) we would have rN sq “ r1sq which contradicts
the fact that q divides N . �

[We have seen that there are infinitely many positive primes in the sets r1s2, r1s4 and r3s4. More
generally, it is a theorem of Dirichlet (1837) that there exist infinitely many primes in the set
rasn for any coprime integers gcdpa, nq “ 1. It turns out that this theorem is very difficult to
prove; Dirichlet’s proof used complex analysis and gave birth to the subject of “analytic number
theory”. We can rephrase the result by saying that for integers gcdpa, nq “ 1, the linear polynomial
fpxq “ nx` a takes infinitely many prime values. For quadratic polynomials the problem is even
harder. Landau’s 4th Problem (1914) asks whether there are infinitely many primes of the form
x2 ` 1. It is still open.]

3.4. (Useful Lemma). For all integers a, b, c P Z with gcdpa, bq “ 1 show that

pa|c^ b|cq ñ pab|cq.

[Hint: Use the fact that gcdpa, bq “ 1 to write ax` by “ 1 for some x, y P Z.]

Proof. Consider integers a, b, c P Z with gcdpa, bq “ 1 and assume that we have a|c and b|c,
say c “ ac1 and c “ bc2. Since gcdpa, bq “ 1 the Euclidean Algorithm says that there exist



integers x, y P Z such that ax` by ` 1. Then multiplying this equation by c gives

1 “ ax` by

c “ cpax` byq

c “ cax` cby

c “ pbc2qpaxq ` pac1qpbyq

c “ pabqpc2xq ` pabqpc1yq

c “ pabqpc2x` c1yq,

which implies that pabq|c as desired. �

3.5. (Generalization of Euler’s Totient Theorem). Consider a positive integer n with
prime factorization

n “ pe11 pe22 pe33 ¨ ¨ ¨ .

Now consider any non-negative integers e, f P N with the properties

‚ ei ď e for all i,

‚ ϕppeii q|f for all i.

In this case prove that raf`esn “ raesn for all integers a P Z. In the special case that
gcdpa, nq “ 1 we could then multiply both sides by the inverse ra´esn to obtain raf sn “ r1sn,
which is just another way to state Euler’s Totient Theorem. [Hint: For all i we have either
pi|a or pi - a. In the former case show that peii |a

e and in the latter case use Euler’s Totient

Theorem to show that peii |pa
f ´ 1q. In either case we have peii |a

epaf ´ 1q. Now use 3.4 to

conclude that n|aepaf ´ 1q.]

Proof. Consider the factor peii of n. Assuming that ei ď e and ϕppeii q|f , our goal is to show

that peii |a
epaf ´ 1q for all integers a P Z. Then since the factors peii and p

ej
j are coprime for

i ‰ j we can use the result of Problem 3.4 to conclude that n|aepaf ´ 1q “ paf`e ´ aeq and
hence

raf`esn “ ra
esn

for all integers a P Z.

There are two cases: (1) If pi|a then by Euclid’s Lemma (or unique factorization) we must
have peii |a

ei , and since ei ď e we must have aei |ae. Putting the two together gives peii |a
e and

hence peii |a
epaf ´ 1q. (2) If pi - a then since pi is prime we must have gcdpa, peii q “ 1. In

this case Euler’s Totient Theorem says that the multiplicative order oipaq of a mod peii divides
ϕppeii q. Now the assumption ϕppeii q|f implies that we have f “ oipaq ¨ k for some k P N and
hence

raf speii
“ raoipaq¨kspeii

“

´

raoipaqspeii

¯k
“

´

r1speii

¯k
“ r1speii

.

In other words, we have peii |pa
f ´ 1q, which implies that peii |a

epaf ´ 1q as desired. �

[We proved in class that ϕpnq “
ś

i ϕpp
ei
i q, hence for any non-negative integer k ě 0, the integer

f “ ϕpnqk satisfies the assumption of Problem 3.5. (This motivates our use of the letter “f”.)
Then the result of 3.5 implies that we have

raϕpnqk`esn “ ra
esn



for all integers a P Z and for all non-negative integers k, e P N such that ei ď e for all i.]

3.6. (RSA Cryptosystem). Consider prime numbers p, q P Z. Since ϕppqq “ pp´1qpq´1q,
Euler’s Totient Theorem tells us that for all integers a with gcdpa, pqq “ 1 we have

rapp´1qpq´1qspq “ r1spq

and then multiplying both sides by raspq gives

(RSA) rapp´1qpq´1q`1spq “ raspq.

Now use 3.5 to show that the second equation (RSA) still holds when gcdpa, pqq ‰ 1, even
though the first equation does not.

Proof. There is not much to do here. Let a be any integer and let n “ p1q1. Then the result
of 3.5 implies that for any non-negative integers e, f P N such that 1 ď e and pp´ 1qpq´ 1q “
ϕpnq|f we have raf`esn “ ra

esn. In other words, for all integers a P Z and for all e ě 1 and
k ě 0 we have

rapp´1qpq´1qk`espq “ ra
espq.

�

[We will see in class what this equation is good for; the title of Problem 3.6 is a hint.]


