3.1. (Infinitely Many Primes). Prove that there are infinitely many positive prime integers. That is, prove that the sequence

$$
p_{1}=2, p_{2}=3, p_{3}=5, p_{4}=7, p_{5}=11, p_{6}=13, \ldots
$$

never stops. [Hint: Assume for contradiction that the sequence stops, i.e., assume that the numbers $p_{1}, p_{2}, \ldots, p_{k}$ are all of the positive prime numbers. Now consider the number $N:=p_{1} p_{2} \cdots p_{k}+1$. We know from class that the number N has a positive prime factor $p \mid N$. Prove that this prime p is not in our list.]

Proof. Assume for contradiction that there are only finitely many positive primes and denote them by $p_{1}, p_{2}, \ldots, p_{k}$. Now consider the number

$$
N:=p_{1} p_{2} \cdots p_{k}+1
$$

Since $N \geqslant 2$ we know from class that N has a positive prime factor, say $p \mid N$. By the assumption that $p_{1}, p_{2}, \ldots, p_{k}$ are all of the primes we must have $p_{i}=p$ for some i. But since $p \mid N$ we know that $[N]_{p}=[0]_{p}$ and from the definition of N we have $[N]_{p_{i}}=[1]_{p_{i}}$ for all i. Thus if $p=p_{i}$ for some i then we obtain the equation

$$
[0]_{p}=[N]_{p}=[1]_{p},
$$

which contradicts the uniqueness of remainders.
3.2. (Infinitely Many Primes $\equiv 3$ Mod 4). In this exercise you will show that the sequence

$$
3,7,11,15,19,23,27, \ldots
$$

contains infinitely many prime numbers.
(a) Consider a positive integer $n \geqslant 1$. If $[n]_{4}=[3]_{4}$, prove that n has a positive prime factor $p \mid n$ such that $[p]_{4}=[3]_{4}$. [Hint: We know from class that n can be written as a product of positive primes. What if none of them are in the set [3] $]_{4}$?]
(b) Assume for contradiction that there are only finitely many positive primes in $[3]_{4}$ and call them

$$
3<p_{1}<p_{2}<\cdots<p_{k} .
$$

Now use part (a) to obtain a contradiction. [Hint: Define the number $N:=4 p_{1} p_{2} \cdots p_{k}+$ 3. By part (a) this number has a positive prime factor $p \in[3]_{4}$. Show that the prime p is not in your list.]

Proof. (a): Let $n \geqslant 1$ and suppose that $[n]_{4}=[3]_{4}$. We know from class that n can be written as a finite product of positive primes, say $n=p_{1} p_{2} \cdots p_{k}$. The assumption $[n]_{4}=[3]_{4}$ implies that n is odd so all of the primes p_{i} must also we odd. In other words, for each i we have
either $\left[p_{i}\right]_{4}=[1]_{4}$ or $\left[p_{i}\right]_{4}=[3]$. Finally, we assume for contradiction that $\left[p_{i}\right]_{4}=[1]_{4}$ for all i. Then we obtain

$$
\begin{aligned}
{[n]_{4} } & =\left[p_{1} p_{2} \cdots p_{k}\right]_{4} \\
& =\left[p_{1}\right]_{4} \cdot\left[p_{2}\right]_{4} \cdots\left[p_{k}\right]_{4} \\
& =[1]_{4} \cdot[1]_{4} \cdots[1]_{4} \\
& =[1]_{4},
\end{aligned}
$$

which contradicts the fact that $[n]_{4}=[3]_{4}$. We conclude that there exists some i such that $\left[p_{i}\right]_{4}=[3]_{4}$ as desired.
(b): Assume for contradiction that there are finitely many positive primes in the set $[3]_{4}$ and denote them by

$$
3<p_{1}<p_{2}<\cdots<p_{k} .
$$

Now consider the number $N:=4 p_{1} p_{2} \cdots p_{k}+3$. Since $[N]_{4}=[3]_{4}$ we know from part (a) that there exists a positive prime factor $p \mid N$ such that $[p]_{4}=[3]_{4}$. I claim that $p \neq 3$. Indeed, if $3 \mid N$ then we would also have $3 \mid 4 p_{1} p_{2} \cdots p_{k}$ and by Euclid's Lemma this would imply that $3 \mid p_{i}$ for some i. But since p_{i} is prime and $p_{i}>3$ this is a contradiction. Now since $p \neq 3$ is a positive prime in the set $[3]_{4}$ we must have $p=p_{i}$ for some i. But since $p \mid N$ we know that $[N]_{p}=[0]_{p}$ and from the definition of N we have $[N]_{p_{i}}=[3]_{p_{i}}$ for all i. Thus if $p=p_{i}$ for some i then we obtain the equation

$$
[0]_{p}=[N]_{p}=[3]_{p},
$$

which contradicts the uniqueness of remainders because $p>3$.
3.3. (Infinitely Many Primes $\equiv 1$ Mod 4). In this exercise you will show that the sequence

$$
1,5,9,13,17,21,25, \ldots
$$

contains infinitely many prime numbers.
(a) Assume for contradiction that there are only finitely many primes in this list and call them $p_{1}, p_{2}, \ldots, p_{k}$. Now define the numbers

$$
\begin{aligned}
x & :=2 p_{1} p_{2} \cdots p_{k}, \\
N & :=x^{2}+1 .
\end{aligned}
$$

Show that $N \in[1]_{4}$ and that $N \in[1]_{p_{i}}$ for all i.
(b) If N is prime, show that part (a) leads to a contradiction.
(c) If N is not prime then there exists a positive prime divisor $q \mid N$. Use Euclids Totient Theorem to prove that $q \in[1]_{4}$ and then show that part (a) still leads to a contradiction. [Hint: Show that 4 is the multiplicative order of $x \bmod q$ and then use the fact that $\varphi(q)=q-1$.]

Proof. (a): Note that $2 \mid x$. From Euclid's Lemma (or unique factorization) this implies that $4 \mid x^{2}$ and hence $\left[x^{2}\right]_{4}=[0]_{4}$. Then we find that

$$
[N]_{4}=\left[x^{2}+1\right]_{4}=\left[x^{2}\right]_{4}+[1]_{4}=[0]_{4}+[1]_{4}=[1]_{4}
$$

as desired. Note also that $p_{i} \mid x$ for each i, so that $p_{i} \mid x^{2}$ and hence $\left[x^{2}\right]_{p_{i}}=[0]_{p_{i}}$. Then a similar argument gives $[N]_{p_{i}}=[1]_{p_{i}}$.
(b): Suppose that N is prime. By part (a) we know that $[N]_{4}=[1]_{4}$ which implies that we must have $N=p_{i}$ for some i. But then we would also have from part (a) that

$$
[1]_{N}=[1]_{p_{i}}=[N]_{p_{i}}=[N]_{N}=[0]_{N},
$$

which contradicts the uniqueness of remainders.
(c): If N is not prime then we still know that N has a prime factor, say $q \mid N$, and since N is odd we can assume that $q>2$. In this case I claim that x has multiplicative order 4 mod q. Indeed, we can reduce the equation $x^{2}+1=N \bmod q$ to obtain

$$
\begin{aligned}
{\left[x^{2}+1\right]_{q} } & =[N]_{q} \\
{\left[x^{2}\right]_{q}+[1]_{q} } & =[0]_{q} \\
{\left[x^{2}\right]_{q} } & =[-1]_{q} \\
\left(\left[x^{2}\right]_{q}\right)^{2} & =\left([-1]_{q}\right)^{2} \\
{\left[x^{4}\right]_{q} } & =[1]_{q} .
\end{aligned}
$$

This implies that the multiplicative order $o_{q}(x)$ divides 4 . But we also know that $[x]_{q} \neq[1]_{q}$ since otherwise we would have

$$
[q-1]_{q}=[-1]_{q}=\left[x^{2}\right]_{q}=\left([x]_{q}\right)^{2}=\left([1]_{q}\right)^{2}=[1]_{q},
$$

which contradicts the uniqueness of remainders because $q>2$. We conclude that $o_{q}(x)=4$.
In general, Euler's Totient Theorem says that the multiplicative order $o_{q}(x)$ divides the value of the totient function $\varphi(q)$. Since q is prime this means that 4 divides $\varphi(q)=q-1$, and hence $[q]_{4}=[1]_{4}$. Since the list $p_{1}, p_{2}, \ldots, p_{k}$ contains all positive primes of the form $[1]_{4}$ we must have $q=p_{i}$ for some p_{i}. But then from part (a) we would have $[N]_{q}=[1]_{q}$ which contradicts the fact that q divides N.
[We have seen that there are infinitely many positive primes in the sets $[1]_{2},[1]_{4}$ and $[3]_{4}$. More generally, it is a theorem of Dirichlet (1837) that there exist infinitely many primes in the set $[a]_{n}$ for any coprime integers $\operatorname{gcd}(a, n)=1$. It turns out that this theorem is very difficult to prove; Dirichlet's proof used complex analysis and gave birth to the subject of "analytic number theory". We can rephrase the result by saying that for integers $\operatorname{gcd}(a, n)=1$, the linear polynomial $f(x)=n x+a$ takes infinitely many prime values. For quadratic polynomials the problem is even harder. Landau's 4th Problem (1914) asks whether there are infinitely many primes of the form $x^{2}+1$. It is still open.]
3.4. (Useful Lemma). For all integers $a, b, c \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=1$ show that

$$
(a|c \wedge b| c) \quad \Rightarrow \quad(a b \mid c) .
$$

[Hint: Use the fact that $\operatorname{gcd}(a, b)=1$ to write $a x+b y=1$ for some $x, y \in \mathbb{Z}$.]

Proof. Consider integers $a, b, c \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=1$ and assume that we have $a \mid c$ and $b \mid c$, say $c=a c^{\prime}$ and $c=b c^{\prime \prime}$. Since $\operatorname{gcd}(a, b)=1$ the Euclidean Algorithm says that there exist
integers $x, y \in \mathbb{Z}$ such that $a x+b y+1$. Then multiplying this equation by c gives

$$
\begin{aligned}
& 1=a x+b y \\
& c=c(a x+b y) \\
& c=c a x+c b y \\
& c=\left(b c^{\prime \prime}\right)(a x)+\left(a c^{\prime}\right)(b y)\left(c^{\prime}\right) \\
& c=(a b)\left(c^{\prime \prime} x\right)+(a b)\left(c^{\prime} y\right) \\
& c=(a b)\left(c^{\prime \prime} x+c^{\prime} y\right),
\end{aligned}
$$

which implies that $(a b) \mid c$ as desired.
3.5. (Generalization of Euler's Totient Theorem). Consider a positive integer n with prime factorization

$$
n=p_{1}^{e_{1}} p_{2}^{e_{2}} p_{3}^{e_{3}} \cdots
$$

Now consider any non-negative integers $e, f \in \mathbb{N}$ with the properties

- $e_{i} \leqslant e$ for all i,
- $\varphi\left(p_{i}^{e_{i}}\right) \mid f$ for all i.

In this case prove that $\left[a^{f+e}\right]_{n}=\left[a^{e}\right]_{n}$ for all integers $a \in \mathbb{Z}$. In the special case that $\operatorname{gcd}(a, n)=1$ we could then multiply both sides by the inverse $\left[a^{-e}\right]_{n}$ to obtain $\left[a^{f}\right]_{n}=[1]_{n}$, which is just another way to state Euler's Totient Theorem. [Hint: For all i we have either $p_{i} \mid a$ or $p_{i} \nmid a$. In the former case show that $p_{i}^{e_{i}} \mid a^{e}$ and in the latter case use Euler's Totient Theorem to show that $p_{i}^{e_{i}} \mid\left(a^{f}-1\right)$. In either case we have $p_{i}^{e_{i}} \mid a^{e}\left(a^{f}-1\right)$. Now use 3.4 to conclude that $n \mid a^{e}\left(a^{f}-1\right)$.]

Proof. Consider the factor $p_{i}^{e_{i}}$ of n. Assuming that $e_{i} \leqslant e$ and $\varphi\left(p_{i}^{e_{i}}\right) \mid f$, our goal is to show that $p_{i}^{e_{i}} \mid a^{e}\left(a^{f}-1\right)$ for all integers $a \in \mathbb{Z}$. Then since the factors $p_{i}^{e_{i}}$ and $p_{j}^{e_{j}}$ are coprime for $i \neq j$ we can use the result of Problem 3.4 to conclude that $n \mid a^{e}\left(a^{f}-1\right)=\left(a^{f+e}-a^{e}\right)$ and hence

$$
\left[a^{f+e}\right]_{n}=\left[a^{e}\right]_{n}
$$

for all integers $a \in \mathbb{Z}$.
There are two cases: (1) If $p_{i} \mid a$ then by Euclid's Lemma (or unique factorization) we must have $p_{i}^{e_{i}} \mid a^{e_{i}}$, and since $e_{i} \leqslant e$ we must have $a^{e_{i}} \mid a^{e}$. Putting the two together gives $p_{i}^{e_{i}} \mid a^{e}$ and hence $p_{i}^{e_{i}} \mid a^{e}\left(a^{f}-1\right)$. (2) If $p_{i} \nmid a$ then since p_{i} is prime we must have $\operatorname{gcd}\left(a, p_{i}^{e_{i}}\right)=1$. In this case Euler's Totient Theorem says that the multiplicative order $o_{i}(a)$ of $a \bmod p_{i}^{e_{i}}$ divides $\varphi\left(p_{i}^{e_{i}}\right)$. Now the assumption $\varphi\left(p_{i}^{e_{i}}\right) \mid f$ implies that we have $f=o_{i}(a) \cdot k$ for some $k \in \mathbb{N}$ and hence

$$
\left[a^{f}\right]_{p_{i}^{e_{i}}}=\left[a^{o_{i}(a) \cdot k}\right]_{p_{i}^{e_{i}}}=\left(\left[a^{o_{i}(a)}\right]_{p_{i}^{e_{i}}}\right)^{k}=\left([1]_{p_{i}^{e_{i}}}\right)^{k}=[1]_{p_{i}^{e_{i}}} .
$$

In other words, we have $p_{i}^{e_{i}} \mid\left(a^{f}-1\right)$, which implies that $p_{i}^{e_{i}} \mid a^{e}\left(a^{f}-1\right)$ as desired.
[We proved in class that $\varphi(n)=\prod_{i} \varphi\left(p_{i}^{e_{i}}\right)$, hence for any non-negative integer $k \geqslant 0$, the integer $f=\varphi(n) k$ satisfies the assumption of Problem 3.5. (This motivates our use of the letter " f ".) Then the result of 3.5 implies that we have

$$
\left[a^{\varphi(n) k+e}\right]_{n}=\left[a^{e}\right]_{n}
$$

for all integers $a \in \mathbb{Z}$ and for all non-negative integers $k, e \in \mathbb{N}$ such that $e_{i} \leqslant e$ for all i.]
3.6. (RSA Cryptosystem). Consider prime numbers $p, q \in \mathbb{Z}$. Since $\varphi(p q)=(p-1)(q-1)$, Euler's Totient Theorem tells us that for all integers a with $\operatorname{gcd}(a, p q)=1$ we have

$$
\left[a^{(p-1)(q-1)}\right]_{p q}=[1]_{p q}
$$

and then multiplying both sides by $[a]_{p q}$ gives

$$
\begin{equation*}
\left[a^{(p-1)(q-1)+1}\right]_{p q}=[a]_{p q} . \tag{RSA}
\end{equation*}
$$

Now use 3.5 to show that the second equation (RSA) still holds when $\operatorname{gcd}(a, p q) \neq 1$, even though the first equation does not.

Proof. There is not much to do here. Let a be any integer and let $n=p^{1} q^{1}$. Then the result of 3.5 implies that for any non-negative integers $e, f \in \mathbb{N}$ such that $1 \leqslant e$ and $(p-1)(q-1)=$ $\varphi(n) \mid f$ we have $\left[a^{f+e}\right]_{n}=\left[a^{e}\right]_{n}$. In other words, for all integers $a \in \mathbb{Z}$ and for all $e \geqslant 1$ and $k \geqslant 0$ we have

$$
\left[a^{(p-1)(q-1) k+e}\right]_{p q}=\left[a^{e}\right]_{p q} .
$$

[We will see in class what this equation is good for; the title of Problem 3.6 is a hint.]

