MTH 505: Number Theory Spring 2017
Homework 2 Drew Armstrong

The Frobenius Coin Problem. Consider the equation
ax +by =c

where a, b, ¢, z,y are natural numbers. We can think of $a and $b as two denominations of
coins and $c¢ as some value that we want to pay. The equation has a solution (z,y) € N? if
and only if we can make change for $c, and in this case we say that ¢ is (a, b)-representable.
More generally, we will consider the set of (a, b)-representations of c:

Rape:={(z,y) € N2 : az + by = c}.

The problem is trivial when ab = 0 so we will always assume that ab # 0, i.e., that a and b are
both nonzero.

2.1. Consider natural numbers a,b,c € N with d = ged(a, b), where a = da’ and b = db’.
(a) If d { ¢ prove that R, . = .

(b) If d|c with ¢ = dc’ prove that Rqp. = Rg p . [Unlike the case of Diophantine equa-
tions, it is possible that both of these sets could be empty.]

Proof. (a): Let d { ¢ and assume for contradiction that R, is not empty, i.e., assume that
there exists a pair of natural numbers (z,y) € N? such that ax + by = c. But then we have

c=ax+by
= (da")z + b(dV')
=d(d'z + b'y),
which contradicts the fact that d 1 c.

(b): Now suppose that d|c so that ¢ = d¢’ for some ¢ € Z. Since ¢ and d are both positive we
must have ¢/ € N. To show that Ry y » S Rap. consider any (z,y) € N, so that o’z + by = ¢
Then we have

dz+by=-<
d(d'x +b'y) =d(c)
(da")x + (db')y = (dc)
ar + by = c,

which says that (z,y) € Rgp. as desired. Conversely, consider any (z,y) € Rgp., so that
ax + by = c. Then we have

ax +by =c
(da")z + (db')y = (dc)
d(a'z +V'y) =d()
adr+by=~,
which says that (z,y) € Ry . (The last step used multiplicative cancellation.) O



The previous result allows us to restrict our attention to coprime a and b.

2.2. Let a,b,c € Nwith ab # 0 and ged(a,b) = 1. If R, # I (ie., if ¢ is (a, b)-representable)
prove that there exists a unique representation (u,v) € R, . with the property

O0<u<b.

[Hint: For existence, let (x,y) € Rqp . be an arbitrary solution. Since b # 0 there exists a
quotient and remainder of z mod b. For uniqueness, use the coprimality of a and b to apply
Euclid’s Lemma.|

Proof. If R, # & then there exists some pair (z,y) € N2 such that ax + by = c. Since b # 0
there exists a pair of integers ¢, r € Z such that

r=qb+r
0<r<z

Then substituting x = ¢b + r gives

axr +by =c
algb+r)+by=c
ar +b(qg+vy) =c.
It only remains to check that (u,v) := (r,¢ + ) € N? and we already know that r € N. Since

r < x we also have gb = (z — r) > 0, which since b > 0 implies that ¢ > 0. But then since
y € N we have ¢ + y € N as desired. This proves existence.

For uniqueness, assume that we have (u1,v1) and (ug,v2) in R,p. with 0 < u; < b and
0 < ug < b. Then since au; + bvy = ¢ = aus + bvy we see that

auy + bvy = aug + bvgy
a(uy — ug) = b(ve — v1),

which implies that b divides a(u; — ug2). But then since ged(a,b) = 1, Euclid’s Lemma says
that b|(u; — ug). If (u3 —ug) = 0 then we are done. Otherwise, suppose without loss of
generality that u; — ug > 0. Then the fact that b|(u; — ug2) implies that

b<u; —us <up

which contradicts the fact that u; < b. This contradiction shows that (u; —u2) = 0 and then
the equation b(ve — v1) = a(uy — uz) = a -0 = 0 together with the fact b # 0 implies that
(vg — v1) = 0 as desired. O

2.3. Let a,b e N be coprime with ab # 0. If ¢ = (ab — a — b) prove that R, . = . That is,
prove that the number (ab—a —b) is not (a,b)-representable. [Hint: Let ¢ = (ab—a —b)
and assume for contradiction there exists a representation (x,y) € Ry p. Show that the cases
x < band z = b both lead to the contradiction y < 0. You can use 2.2 for the case z < b.]

Proof. Assume for contradiction that we have a representation ax + by = (ab — a — b) with
(x,y) € N2, From 2.2 this implies that there exists a representation au + bv = (ab — a — b)



with (u,v) € N? and 0 < u < b. Now observe that
av+bv=ab—a—0
au+a=ab—b—bv
a(u+1)=bla—1-w).
The last equation says that b divides a(u + 1) and then since a and b are coprime we obtain
b|(u + 1) from Euclid’s Lemma. Since u + 1 > 0 this implies that b < u + 1 [this argument is

in the notes| but we already know that v < b (i.e., u + 1 < b) so we conclude that u + 1 = b.
Finally, we substitute u = b — 1 to obtain

au+bv=ab—a—>b
alb—1)+bv=ab—a—>b
ab—a+bv=ab—a—>b
bv=—-b
v=—1,

which contradicts the fact that v € N. O

[Sorry | didn't follow my own hint very closely.]

2.4. Let a,b € N be coprime with ab # 0. In this exercise you will prove by induction that
every number ¢ > (ab—a —b) is (a,b)-representable.

(a) Prove the result when a =1 or b = 1.

(b) From now on we will assume that @ > 2 and b > 2. In this case prove that the number
(ab—a —b+1) is (a,b)-representable. [Hint: From the Euclidean Algorithm and 2.2
there exist 2/,y € Z with az’ + by’ =1 and 0 < 2’ < b— 1. Prove that (2’ —1) e N
and (y' + a—1) € N, and hence

a(z’ —1)+b(y +a—1)=(ab—a—b+1)
is a valid representation.]

(c) Let n > (ab—a—0b+ 1) and assume for induction that n is (a, b)-representable. In this
case prove that n + 1 is also (a, b)-representable. [Hint: Let 2/,y’ be as in part (b). By
the induction hypothesis and 2.2 there exist x,y € N with az + by =n and 0 < z < b.
Note that

alz+2)+bly+y)=(n+1).
If y + 4 = 0 then you are done. Otherwise, show that
ax+a2" —b)+bly+y +a)=(n+1)

is a valid representation.]

Proof. (a): Since the problem is symmetric in a and b we will assume without loss of generality
that b = 1. Now we want to show that every number ¢ > (a —a — 1) = —1, i.e., every number
¢ = 0 is (a,1)-representable. But this is certainly true because a(0) + 1(0) = 0 is a valid
representation of ¢ = 0 and a(1) + 1(¢ — 1) = ¢ is a valid representation of ¢ > 0. This solves
the problem when @ = 1 or b = 1 so from now on we will assume that a > 2 and b > 2.

(b): Base Case. Since ged(a,b) = 1 the Euclidean Algorithm gives integers 2/, vy’ € Z such
that az’ + by’ = 1 and from 2.2 we can assume that 0 < 2/ < b. [Actually this is a bit easier



than 2.2 because we don’t require 3y’ = 0.] If 2/ = 0 then we have by’ = az’ + by’ = 1 which
implies that b = 1, contradicting the fact that b > 2. Thus we must have ' > 1, i.e., 2’—1 € N.
To complete the proof, assume for contradiction that (y' + a — 1) < 0, i.e., ¥’ + a < 0. This
implies that ¢’ < —a and hence by’ < —ab. Finally, since (2’ — b) < 0 we obtain the desired
contradiction:

1=ax +by <ax’ —ab=a(z’—b) <0.
We conclude that (2’ — 1) and (v’ + a — 1) are natural numbers, so
a(@ —1)+b(y +a—1)=(ax’ +by')—a+ab—b=ab—a—b+1
is a valid (a, b)-representaiton of (ab —a — b+ 1).

(c): Induction Step. Let n > (ab —a — b+ 1) and assume for induction that there exist
natural numbers (z,y) € N? such that az + by = n. In this case we want to show that n +1 is
also (a, b)-representable. To do this, recall from part (b) that we have integers 2/, vy’ € Z with
the following properties:

o ar’ +by =1,
e 1</ <b—1,
ey +a>=1.
Now add the equations ax + by = n and az’ + by’ = 1 to obtain
a(z+2)+bly+y)=n+1,

where z + 2’ > 0. If we also have y + 1’ > 0 then we are done, so assume that y+1’ < 0. Since
v +a>1and y >0 we have (y+ ¢’ +a) = 1. It only remains to check that (x + 2’ —b) > 0.
To see this we use the assumptions (n+ 1) = (ab—a —b+2) and (y +y + 1) < 0 to obtain

n+l=al@+a2)+bly+y)>ab—a—b+2
a(z+2)=ab—a—-b—bly+vy)+2
>ab—a—bly+y +1)+2
> ab—a—b(0)+ 2
>ab—a
=a(b—1) > 0.

By cancelling a > 0 from both sides of a(x + 2’) > a(b — 1) we obtain (z + 2’) > (b — 1) and
hence (z 4+ 2’ —b) = 0 as desired. It follows that

a(z+2 —b)+bly+y +a) = (azx +by) + (ax’ +by') + (—ab+ab) =n+1+0

is a valid (a, b)-representation of n + 1. O

[That was tricky.]

Let a,b e N be coprime with ab # 0. So far you have proved that |R, } (qp—q—t)| = 0 and
|Rapc| =1 forall ¢ > (ab—a —b).

The next problem gives a rough lower bound for the total number of (a, b)-representations.



2.5. Let a,b € N be coprime with ab # 0. Prove that

|Rap.c| = [%J = max{n € N:n < c¢/(ab)}.

[Hint: We know from class that the integer solutions of ax + by = ¢ have the form
(z,y) = (cx’ — kb,cy’ + ka) VkeZ,

where 2/, 1y’ € Z are some specific integers satisfying ax’ + by’ = 1. Now prove that the natural

number solutions correspond to values of k € Z such that
P /
Y o<k<E

a b

Counting these integers is delicate but you should be able to give a rough bound.]

Proof. Consider a,b,c € N with ged(a,b) = 1. From 2.2 there exist integers z’,y’ € Z such
that az’ + by’ = 1 and 0 < 2’ < b. We know from class that the complete integer solution to
the equation ax + by = c is given by

(x,y) = (ca’ — kb,cy’ + ka) Vk e Z,

and our job is to discover which of these solutions are non-negative. That is, we need to find
all integers k € Z such that the following two inequalities hold:

cx' —kb=>0
cy +ka' = 0.
These two inequalities can be written in terms of fractions to obtain

R /
Y <h<E
a b
Each such value of k € Z corresponds to a non-negative solution of ax + by = ¢, so we conclude
that |R, .| is equal to the number of integers in the closed real number interval [—cy'/a, cz’/b].
The exact count is tricky, but the floor of the length of the interval provides a lower bound:

/ /
Rasel > | - =2
caz’ + cby’
- i ab J
clax’ + by') c
- | ab J - l%J

Unfortunately this rough bound gives us no information when ¢ < ab, i.e., when |¢/(ab)| = 0.
With a bit more work one could compute the exact formula: for any ax’ + by’ = 1 we have

I K O
= - {2 ()

where {z} := x — |z| is the fractional part of the rational number z € Q. This formula is due
to Tiberiu Popoviciu in 1953.



2.6. Let a,b € N be coprime with ab # 0. Given an integer 0 < ¢ < ab such that a t ¢ and
bt ¢, use Popoviciu’s formula (%) to show that

|Ra,b,c| + |Ra,b,(ab—c)| =1
[Hint: Use the fact that {—z} = 1 — {z} when z ¢ Z.]

Proof. Consider a,b,c € N with ged(a,b) =1, 0 < ¢ < ab, and where a and b do not divide c.
Then for any integers az’ + by’ = 1 Popoviciu’s formula gives

_ab—c (ab— )y (ab— c)2’
‘Ra,b,(ab—c)| =T ab { b +1

a

PSRRI PN N PO
=2 = {by a} {ax b}‘

But now observe that for all integers n € Z and non-integer rationals x € (Q we have

{n—u}={-2} =1—{z}.

Thus the above formula becomes

c cy , cr’
=2 - — _ U A G - =
‘Ra7b,(ab—c)| ab {by a } {ax b }

(2 0-17)

=1—|Rapcl-
(]

In conclusion, one can show from 2.6 that there exist exactly % natural numbers that are

not (a,b)-representable. This fact was first proved by James Joseph Sylvester in 1884.

Proof. 1 didn’t ask you to show this, but here’s the proof. Let ged(a,b) = 1. Then we
know that every integer ¢ > ab is (a,b)-representable. [In fact we know that every integer
¢ > (ab — a — b) is representable, but we don’t need this right now.] Of the ab + 1 elements
of the set {c € Z : 0 < ¢ < ab} we know that b elements are multiples of a, and a elements
are multiples of b. Furthermore, since ged(a,b) = 1 we know that the only elements that are
multiples of both a and b are 0 and ab. We conclude that there are exactly

(ab+1)—(a+b—2)=(ab—a—-b+1)=(a—1)(b—1)

elements of the set that are not a multiple of a or b. The result of Problem 2.6 says that
exactly half of these numbers are (a, b)-representable. O

Epilogue: The proofs above are algebraic, but there is also a beautiful geometric way to think
about the Frobenius coin problem. Consider a,b € N with ab # 0 and ged(a,b) = 1. Label
each point (z,y) € Z? of the integer lattice by the number ax + by. Note that points on the
same line of slope —a/b receve the same label. The problem is to count the integer points on
the line ax + by = c that lie in the first quadrant.

For example, here is the labelling corresponding to the coprime pair (a,b) = (5, 8):
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I have drawn the lines 5z + 8y = 5-8 = 40 and bx + 8y = 0. It was relatively easy to
show that every label ¢ > 40 occurs in the first quadrant, but the numbers below 40 are
more tricky. I have outlined the numbers below 40 are are not multiples of 5 or 8 but are
still (5, 8)-representable. We observe that there are (5 — 1)(8 — 1)/2 = 14 such numbers, as
expected.

I have also outlined the numbers in the fourth quadrant that are not (5,8)-representable.
Observe that these two shapes are congruent up to 180° rotation, and in fact this is the
transformation ¢ — (ab — ¢). Observe further that the two shapes fit together perfectly to
make an (a — 1) x (b — 1) rectangle. This is the geometric explanation for Sylvester’s formula
(a—1)(b—1)
5 )



