The Frobenius Coin Problem. Consider the equation

ax + by = c

where a, b, c, x, y are **natural numbers**. We can think of a and b as two denominations of coins and c as some value that we want to pay. The equation has a solution $(x, y) \in \mathbb{N}^2$ if and only if we can make change for c, and in this case we say that c is (a, b)-representable. More generally, we will consider the set of (a, b)-representations of c:

$$R_{a,b,c} := \{ (x, y) \in \mathbb{N}^2 : ax + by = c \}.$$

The problem is trivial when ab = 0 so we will always assume that $ab \neq 0$, i.e., that a and b are both nonzero.

2.1. Consider natural numbers $a, b, c \in \mathbb{N}$ with $d = \operatorname{gcd}(a, b)$, where a = da' and b = db'.

- (a) If $d \nmid c$ prove that $R_{a,b,c} = \emptyset$.
- (b) If d|c with c = dc' prove that $R_{a,b,c} = R_{a',b',c'}$. [Unlike the case of Diophantine equations, it is possible that both of these sets could be **empty**.]

Proof. (a): Let $d \nmid c$ and assume for contradiction that $R_{a,b,c}$ is not empty, i.e., assume that there exists a pair of natural numbers $(x, y) \in \mathbb{N}^2$ such that ax + by = c. But then we have

$$c = ax + by$$

= $(da')x + b(db')$
= $d(a'x + b'y)$,

which contradicts the fact that $d \nmid c$.

(b): Now suppose that d|c so that c = dc' for some $c' \in \mathbb{Z}$. Since c and d are both positive we must have $c' \in \mathbb{N}$. To show that $R_{a',b',c'} \subseteq R_{a,b,c}$ consider any $(x, y) \in \mathbb{N}^2$, so that a'x + b'y = c'. Then we have

$$a'x + b'y = c'$$

$$d(a'x + b'y) = d(c')$$

$$(da')x + (db')y = (dc')$$

$$ax + by = c,$$

which says that $(x, y) \in R_{a,b,c}$ as desired. Conversely, consider any $(x, y) \in R_{a,b,c}$, so that ax + by = c. Then we have

$$ax + by = c$$

$$(da')x + (db')y = (dc')$$

$$d(a'x + b'y) = d(c')$$

$$a'x + b'y = c',$$

which says that $(x, y) \in R_{a',b',c'}$. (The last step used multiplicative cancellation.)

The previous result allows us to restrict our attention to coprime a and b.

2.2. Let $a, b, c \in \mathbb{N}$ with $ab \neq 0$ and gcd(a, b) = 1. If $R_{a,b,c} \neq \emptyset$ (i.e., if c is (a, b)-representable) prove that there exists a **unique representation** $(u, v) \in R_{a,b,c}$ with the property

$$0 \leq u < b.$$

[Hint: For existence, let $(x, y) \in R_{a,b,c}$ be an arbitrary solution. Since $b \neq 0$ there exists a quotient and remainder of $x \mod b$. For uniqueness, use the coprimality of a and b to apply Euclid's Lemma.]

Proof. If $R_{a,b,c} \neq \emptyset$ then there exists some pair $(x, y) \in \mathbb{N}^2$ such that ax + by = c. Since $b \neq 0$ there exists a pair of **integers** $q, r \in \mathbb{Z}$ such that

$$\begin{cases} x = qb + r \\ 0 \leqslant r < x \end{cases}$$

Then substituting x = qb + r gives

$$ax + by = c$$
$$a(qb + r) + by = c$$
$$ar + b(q + y) = c.$$

It only remains to check that $(u, v) := (r, q + y) \in \mathbb{N}^2$ and we already know that $r \in \mathbb{N}$. Since r < x we also have qb = (x - r) > 0, which since b > 0 implies that q > 0. But then since $y \in \mathbb{N}$ we have $q + y \in \mathbb{N}$ as desired. This proves existence.

For uniqueness, assume that we have (u_1, v_1) and (u_2, v_2) in $R_{a,b,c}$ with $0 \le u_1 < b$ and $0 \le u_2 < b$. Then since $au_1 + bv_1 = c = au_2 + bv_2$ we see that

$$au_1 + bv_1 = au_2 + bv_2$$

 $a(u_1 - u_2) = b(v_2 - v_1),$

which implies that b divides $a(u_1 - u_2)$. But then since gcd(a, b) = 1, Euclid's Lemma says that $b|(u_1 - u_2)$. If $(u_1 - u_2) = 0$ then we are done. Otherwise, suppose without loss of generality that $u_1 - u_2 > 0$. Then the fact that $b|(u_1 - u_2)$ implies that

$$b \leqslant u_1 - u_2 \leqslant u_1$$

which contradicts the fact that $u_1 < b$. This contradiction shows that $(u_1 - u_2) = 0$ and then the equation $b(v_2 - v_1) = a(u_1 - u_2) = a \cdot 0 = 0$ together with the fact $b \neq 0$ implies that $(v_2 - v_1) = 0$ as desired.

2.3. Let $a, b \in \mathbb{N}$ be coprime with $ab \neq 0$. If c = (ab - a - b) prove that $R_{a,b,c} = \emptyset$. That is, prove that **the number** (ab - a - b) is **not** (a, b)-representable. [Hint: Let c = (ab - a - b) and assume for contradiction there exists a representation $(x, y) \in R_{a,b,c}$. Show that the cases x < b and $x \ge b$ both lead to the contradiction y < 0. You can use 2.2 for the case x < b.]

Proof. Assume for contradiction that we have a representation ax + by = (ab - a - b) with $(x, y) \in \mathbb{N}^2$. From 2.2 this implies that there exists a representation au + bv = (ab - a - b)

with $(u, v) \in \mathbb{N}^2$ and $0 \leq u < b$. Now observe that

$$au + bv = ab - a - b$$

$$au + a = ab - b - bv$$

$$a(u + 1) = b(a - 1 - v).$$

The last equation says that b divides a(u + 1) and then since a and b are coprime we obtain b|(u + 1) from Euclid's Lemma. Since u + 1 > 0 this implies that $b \le u + 1$ [this argument is in the notes] but we already know that u < b (i.e., $u + 1 \le b$) so we conclude that u + 1 = b. Finally, we substitute u = b - 1 to obtain

$$au + bv = ab - a - b$$
$$a(b-1) + bv = ab - a - b$$
$$ab - a + bv = ab - a - b$$
$$bv = -b$$
$$v = -1,$$

which contradicts the fact that $v \in \mathbb{N}$.

[Sorry I didn't follow my own hint very closely.]

2.4. Let $a, b \in \mathbb{N}$ be coprime with $ab \neq 0$. In this exercise you will prove by induction that every number c > (ab - a - b) is (a, b)-representable.

- (a) Prove the result when a = 1 or b = 1.
- (b) From now on we will assume that $a \ge 2$ and $b \ge 2$. In this case prove that the number (ab a b + 1) is (a, b)-representable. [Hint: From the Euclidean Algorithm and 2.2 there exist $x', y' \in \mathbb{Z}$ with ax' + by' = 1 and $0 \le x' < b 1$. Prove that $(x' 1) \in \mathbb{N}$ and $(y' + a 1) \in \mathbb{N}$, and hence

$$a(x'-1) + b(y'+a-1) = (ab-a-b+1)$$

is a valid representation.]

(c) Let $n \ge (ab - a - b + 1)$ and assume for induction that n is (a, b)-representable. In this case prove that n + 1 is also (a, b)-representable. [Hint: Let x', y' be as in part (b). By the induction hypothesis and 2.2 there exist $x, y \in \mathbb{N}$ with ax + by = n and $0 \le x < b$. Note that

$$a(x + x') + b(y + y') = (n + 1).$$

If $y + y' \ge 0$ then you are done. Otherwise, show that

$$a(x + x' - b) + b(y + y' + a) = (n + 1)$$

is a valid representation.]

Proof. (a): Since the problem is symmetric in a and b we will assume without loss of generality that b = 1. Now we want to show that every number c > (a - a - 1) = -1, i.e., every number $c \ge 0$ is (a, 1)-representable. But this is certainly true because a(0) + 1(0) = 0 is a valid representation of c = 0 and a(1) + 1(c - 1) = c is a valid representation of c > 0. This solves the problem when a = 1 or b = 1 so from now on we will assume that $a \ge 2$ and $b \ge 2$.

(b): **Base Case.** Since gcd(a, b) = 1 the Euclidean Algorithm gives integers $x', y' \in \mathbb{Z}$ such that ax' + by' = 1 and from 2.2 we can assume that $0 \leq x' < b$. [Actually this is a bit easier

than 2.2 because we don't require $y' \ge 0$.] If x' = 0 then we have by' = ax' + by' = 1 which implies that b = 1, contradicting the fact that $b \ge 2$. Thus we must have $x' \ge 1$, i.e., $x'-1 \in \mathbb{N}$. To complete the proof, assume for contradiction that (y' + a - 1) < 0, i.e., $y' + a \le 0$. This implies that $y' \le -a$ and hence $by' \le -ab$. Finally, since (x' - b) < 0 we obtain the desired contradiction:

$$1 = ax' + by' \le ax' - ab = a(x' - b) < 0.$$

We conclude that (x'-1) and (y'+a-1) are natural numbers, so

$$a(x'-1) + b(y'+a-1) = (ax'+by') - a + ab - b = ab - a - b + 1$$

is a valid (a, b)-representation of (ab - a - b + 1).

(c): **Induction Step.** Let $n \ge (ab - a - b + 1)$ and assume for induction that there exist natural numbers $(x, y) \in \mathbb{N}^2$ such that ax + by = n. In this case we want to show that n + 1 is also (a, b)-representable. To do this, recall from part (b) that we have integers $x', y' \in \mathbb{Z}$ with the following properties:

- ax' + by' = 1,
- $1 \leq x' \leq b 1$,
- $y' + a \ge 1$.

Now add the equations ax + by = n and ax' + by' = 1 to obtain

$$a(x + x') + b(y + y') = n + 1,$$

where $x + x' \ge 0$. If we also have $y + y' \ge 0$ then we are done, so assume that y + y' < 0. Since $y' + a \ge 1$ and $y \ge 0$ we have $(y + y' + a) \ge 1$. It only remains to check that $(x + x' - b) \ge 0$. To see this we use the assumptions $(n + 1) \ge (ab - a - b + 2)$ and $(y + y' + 1) \le 0$ to obtain

$$n + 1 = a(x + x') + b(y + y') > ab - a - b + 2$$

$$a(x + x') \ge ab - a - b - b(y + y') + 2$$

$$> ab - a - b(y + y' + 1) + 2$$

$$\ge ab - a - b(0) + 2$$

$$> ab - a$$

$$= a(b - 1) > 0.$$

By cancelling a > 0 from both sides of a(x + x') > a(b - 1) we obtain (x + x') > (b - 1) and hence $(x + x' - b) \ge 0$ as desired. It follows that

$$a(x + x' - b) + b(y + y' + a) = (ax + by) + (ax' + by') + (-ab + ab) = n + 1 + 0$$

is a valid (a, b) -representation of $n + 1$.

[That was tricky.]

Let $a, b \in \mathbb{N}$ be coprime with $ab \neq 0$. So far you have proved that $|R_{a,b,(ab-a-b)}| = 0$ and $|R_{a,b,c}| \ge 1$ for all c > (ab - a - b).

The next problem gives a rough lower bound for the total number of (a, b)-representations.

2.5. Let $a, b \in \mathbb{N}$ be coprime with $ab \neq 0$. Prove that

$$|R_{a,b,c}| \ge \left\lfloor \frac{c}{ab} \right\rfloor = \max\{n \in \mathbb{N} : n \le c/(ab)\}.$$

[Hint: We know from class that the **integer solutions** of ax + by = c have the form

$$(x,y) = (cx' - kb, cy' + ka) \quad \forall k \in \mathbb{Z},$$

where $x', y' \in \mathbb{Z}$ are some specific integers satisfying ax' + by' = 1. Now prove that the **natural number solutions** correspond to values of $k \in \mathbb{Z}$ such that

$$\frac{-cy'}{a} \leqslant k \leqslant \frac{cx'}{b}$$

Counting these integers is delicate but you should be able to give a rough bound.]

Proof. Consider $a, b, c \in \mathbb{N}$ with gcd(a, b) = 1. From 2.2 there exist integers $x', y' \in \mathbb{Z}$ such that ax' + by' = 1 and $0 \leq x' < b$. We know from class that the complete integer solution to the equation ax + by = c is given by

$$(x,y) = (cx' - kb, cy' + ka) \quad \forall k \in \mathbb{Z},$$

and our job is to discover which of these solutions are non-negative. That is, we need to find all integers $k \in \mathbb{Z}$ such that the following two inequalities hold:

$$cx' - kb \ge 0$$
$$cy' + ka' \ge 0.$$

These two inequalities can be written in terms of fractions to obtain

$$\frac{-cy'}{a} \leqslant k \leqslant \frac{cx'}{b}$$

Each such value of $k \in \mathbb{Z}$ corresponds to a non-negative solution of ax + by = c, so we conclude that $|R_{a,b,c}|$ is equal to the number of integers in the closed real number interval [-cy'/a, cx'/b]. The exact count is tricky, but the floor of the length of the interval provides a lower bound:

$$|R_{a,b,c}| \ge \left\lfloor \frac{cx'}{b} - \frac{-cy'}{a} \right\rfloor$$
$$= \left\lfloor \frac{cax' + cby'}{ab} \right\rfloor$$
$$= \left\lfloor \frac{c(ax' + by')}{ab} \right\rfloor = \left\lfloor \frac{c}{ab} \right\rfloor.$$

Unfortunately this rough bound gives us no information when c < ab, i.e., when $\lfloor c/(ab) \rfloor = 0$. With a bit more work one could compute the exact formula: for any ax' + by' = 1 we have

(*)
$$|R_{a,b,c}| = \frac{c}{ab} - \left\{\frac{cy'}{a}\right\} - \left\{\frac{cx'}{b}\right\} + 1,$$

where $\{x\} := x - \lfloor x \rfloor$ is the **fractional part** of the rational number $x \in \mathbb{Q}$. This formula is due to Tiberiu Popoviciu in 1953.

2.6. Let $a, b \in \mathbb{N}$ be coprime with $ab \neq 0$. Given an integer 0 < c < ab such that $a \nmid c$ and $b \nmid c$, use Popoviciu's formula (*) to show that

$$|R_{a,b,c}| + |R_{a,b,(ab-c)}| = 1.$$

[Hint: Use the fact that $\{-x\} = 1 - \{x\}$ when $x \notin \mathbb{Z}$.]

Proof. Consider $a, b, c \in \mathbb{N}$ with gcd(a, b) = 1, 0 < c < ab, and where a and b do not divide c. Then for any integers ax' + by' = 1 Popoviciu's formula gives

$$|R_{a,b,(ab-c)}| = \frac{ab-c}{ab} - \left\{\frac{(ab-c)y'}{a}\right\} - \left\{\frac{(ab-c)x'}{b}\right\} + 1$$
$$= 2 - \frac{c}{ab} - \left\{by' - \frac{cy'}{a}\right\} - \left\{ax' - \frac{cx'}{b}\right\}.$$

But now observe that for all integers $n \in \mathbb{Z}$ and non-integer rationals $x \in \mathbb{Q}$ we have

$$\{n-x\} = \{-x\} = 1 - \{x\},\$$

Thus the above formula becomes

$$\begin{aligned} |R_{a,b,(ab-c)}| &= 2 - \frac{c}{ab} - \left\{ by' - \frac{cy'}{a} \right\} - \left\{ ax' - \frac{cx'}{b} \right\} \\ &= 2 - \frac{c}{ab} - \left(1 - \left\{ \frac{cy'}{a} \right\} \right) - \left(1 - \left\{ \frac{cx'}{b} \right\} \right) \\ &= 1 - \left(\frac{c}{ab} - \left\{ \frac{cy'}{a} \right\} - \left\{ \frac{cx'}{b} \right\} + 1 \right) \\ &= 1 - |R_{a,b,c}|. \end{aligned}$$

In conclusion, one can show from 2.6 that there exist exactly $\frac{(a-1)(b-1)}{2}$ natural numbers that are not (a, b)-representable. This fact was first proved by James Joseph Sylvester in 1884.

Proof. I didn't ask you to show this, but here's the proof. Let gcd(a, b) = 1. Then we know that every integer $c \ge ab$ is (a, b)-representable. [In fact we know that every integer c > (ab - a - b) is representable, but we don't need this right now.] Of the ab + 1 elements of the set $\{c \in \mathbb{Z} : 0 \le c \le ab\}$ we know that b elements are multiples of a, and a elements are multiples of b. Furthermore, since gcd(a, b) = 1 we know that the only elements that are multiples of both a and b are 0 and ab. We conclude that there are exactly

$$(ab+1) - (a+b-2) = (ab-a-b+1) = (a-1)(b-1)$$

elements of the set that are **not** a multiple of a or b. The result of Problem 2.6 says that exactly **half** of these numbers are (a, b)-representable.

Epilogue: The proofs above are *algebraic*, but there is also a beautiful *geometric* way to think about the Frobenius coin problem. Consider $a, b \in \mathbb{N}$ with $ab \neq 0$ and gcd(a, b) = 1. Label each point $(x, y) \in \mathbb{Z}^2$ of the integer lattice by the number ax + by. Note that points on the same line of slope -a/b receive the same label. The problem is to count the integer points on the line ax + by = c that lie in the first quadrant.

For example, here is the labelling corresponding to the coprime pair (a, b) = (5, 8):

I have drawn the lines $5x + 8y = 5 \cdot 8 = 40$ and 5x + 8y = 0. It was relatively easy to show that every label $c \ge 40$ occurs in the first quadrant, but the numbers below 40 are more tricky. I have outlined the numbers below 40 are are not multiples of 5 or 8 but are still (5, 8)-representable. We observe that there are (5 - 1)(8 - 1)/2 = 14 such numbers, as expected.

I have also outlined the numbers in the fourth quadrant that are **not** (5,8)-representable. Observe that these two shapes are congruent up to 180° rotation, and in fact this is the transformation $c \mapsto (ab - c)$. Observe further that the two shapes fit together perfectly to make an $(a - 1) \times (b - 1)$ rectangle. This is the geometric explanation for Sylvester's formula

$$\frac{(a-1)(b-1)}{2}.$$