
MTH 505: Number Theory Spring 2017
Homework 2 Drew Armstrong

The Frobenius Coin Problem. Consider the equation

ax` by “ c

where a, b, c, x, y are natural numbers. We can think of $a and $b as two denominations of
coins and $c as some value that we want to pay. The equation has a solution px, yq P N2 if
and only if we can make change for $c, and in this case we say that c is pa, bq-representable.
More generally, we will consider the set of pa, bq-representations of c:

Ra,b,c :“ tpx, yq P N2 : ax` by “ cu.

The problem is trivial when ab “ 0 so we will always assume that ab ‰ 0, i.e., that a and b are
both nonzero.

2.1. Consider natural numbers a, b, c P N with d “ gcdpa, bq, where a “ da1 and b “ db1.

(a) If d - c prove that Ra,b,c “ H.

(b) If d|c with c “ dc1 prove that Ra,b,c “ Ra1,b1,c1 . [Unlike the case of Diophantine equa-
tions, it is possible that both of these sets could be empty.]

Proof. (a): Let d - c and assume for contradiction that Ra,b,c is not empty, i.e., assume that
there exists a pair of natural numbers px, yq P N2 such that ax` by “ c. But then we have

c “ ax` by

“ pda1qx` bpdb1q

“ dpa1x` b1yq,

which contradicts the fact that d - c.

(b): Now suppose that d|c so that c “ dc1 for some c1 P Z. Since c and d are both positive we
must have c1 P N. To show that Ra1,b1,c1 Ď Ra,b,c consider any px, yq P N2, so that a1x`b1y “ c1.
Then we have

a1x` b1y “ c1

dpa1x` b1yq “ dpc1q

pda1qx` pdb1qy “ pdc1q

ax` by “ c,

which says that px, yq P Ra,b,c as desired. Conversely, consider any px, yq P Ra,b,c, so that
ax` by “ c. Then we have

ax` by “ c

pda1qx` pdb1qy “ pdc1q

dpa1x` b1yq “ dpc1q

a1x` b1y “ c1,

which says that px, yq P Ra1,b1,c1 . (The last step used multiplicative cancellation.) �



The previous result allows us to restrict our attention to coprime a and b.

2.2. Let a, b, c P N with ab ‰ 0 and gcdpa, bq “ 1. If Ra,b,c ‰ H (i.e., if c is pa, bq-representable)
prove that there exists a unique representation pu, vq P Ra,b,c with the property

0 ď u ă b.

[Hint: For existence, let px, yq P Ra,b,c be an arbitrary solution. Since b ‰ 0 there exists a
quotient and remainder of x mod b. For uniqueness, use the coprimality of a and b to apply
Euclid’s Lemma.]

Proof. If Ra,b,c ‰ H then there exists some pair px, yq P N2 such that ax` by “ c. Since b ‰ 0
there exists a pair of integers q, r P Z such that

"

x “ qb` r
0 ď r ă x

Then substituting x “ qb` r gives

ax` by “ c

apqb` rq ` by “ c

ar ` bpq ` yq “ c.

It only remains to check that pu, vq :“ pr, q ` yq P N2 and we already know that r P N. Since
r ă x we also have qb “ px ´ rq ą 0, which since b ą 0 implies that q ą 0. But then since
y P N we have q ` y P N as desired. This proves existence.

For uniqueness, assume that we have pu1, v1q and pu2, v2q in Ra,b,c with 0 ď u1 ă b and
0 ď u2 ă b. Then since au1 ` bv1 “ c “ au2 ` bv2 we see that

au1 ` bv1 “ au2 ` bv2

apu1 ´ u2q “ bpv2 ´ v1q,

which implies that b divides apu1 ´ u2q. But then since gcdpa, bq “ 1, Euclid’s Lemma says
that b|pu1 ´ u2q. If pu1 ´ u2q “ 0 then we are done. Otherwise, suppose without loss of
generality that u1 ´ u2 ą 0. Then the fact that b|pu1 ´ u2q implies that

b ď u1 ´ u2 ď u1

which contradicts the fact that u1 ă b. This contradiction shows that pu1 ´ u2q “ 0 and then
the equation bpv2 ´ v1q “ apu1 ´ u2q “ a ¨ 0 “ 0 together with the fact b ‰ 0 implies that
pv2 ´ v1q “ 0 as desired. �

2.3. Let a, b P N be coprime with ab ‰ 0. If c “ pab´ a´ bq prove that Ra,b,c “ H. That is,
prove that the number pab´ a´ bq is not pa, bq-representable. [Hint: Let c “ pab´ a´ bq
and assume for contradiction there exists a representation px, yq P Ra,b,c. Show that the cases
x ă b and x ě b both lead to the contradiction y ă 0. You can use 2.2 for the case x ă b.]

Proof. Assume for contradiction that we have a representation ax ` by “ pab ´ a ´ bq with
px, yq P N2. From 2.2 this implies that there exists a representation au ` bv “ pab ´ a ´ bq



with pu, vq P N2 and 0 ď u ă b. Now observe that

au` bv “ ab´ a´ b

au` a “ ab´ b´ bv

apu` 1q “ bpa´ 1´ vq.

The last equation says that b divides apu ` 1q and then since a and b are coprime we obtain
b|pu` 1q from Euclid’s Lemma. Since u` 1 ą 0 this implies that b ď u` 1 [this argument is
in the notes] but we already know that u ă b (i.e., u` 1 ď b) so we conclude that u` 1 “ b.
Finally, we substitute u “ b´ 1 to obtain

au` bv “ ab´ a´ b

apb´ 1q ` bv “ ab´ a´ b

ab´ a` bv “ ab´ a´ b

bv “ ´b

v “ ´1,

which contradicts the fact that v P N. �

[Sorry I didn’t follow my own hint very closely.]

2.4. Let a, b P N be coprime with ab ‰ 0. In this exercise you will prove by induction that
every number c ą pab´ a´ bq is pa, bq-representable.

(a) Prove the result when a “ 1 or b “ 1.

(b) From now on we will assume that a ě 2 and b ě 2. In this case prove that the number
pab ´ a ´ b ` 1q is pa, bq-representable. [Hint: From the Euclidean Algorithm and 2.2
there exist x1, y1 P Z with ax1 ` by1 “ 1 and 0 ď x1 ă b ´ 1. Prove that px1 ´ 1q P N
and py1 ` a´ 1q P N, and hence

apx1 ´ 1q ` bpy1 ` a´ 1q “ pab´ a´ b` 1q

is a valid representation.]

(c) Let n ě pab´a´ b` 1q and assume for induction that n is pa, bq-representable. In this
case prove that n` 1 is also pa, bq-representable. [Hint: Let x1, y1 be as in part (b). By
the induction hypothesis and 2.2 there exist x, y P N with ax` by “ n and 0 ď x ă b.
Note that

apx` x1q ` bpy ` y1q “ pn` 1q.

If y ` y1 ě 0 then you are done. Otherwise, show that

apx` x1 ´ bq ` bpy ` y1 ` aq “ pn` 1q

is a valid representation.]

Proof. (a): Since the problem is symmetric in a and b we will assume without loss of generality
that b “ 1. Now we want to show that every number c ą pa´ a´ 1q “ ´1, i.e., every number
c ě 0 is pa, 1q-representable. But this is certainly true because ap0q ` 1p0q “ 0 is a valid
representation of c “ 0 and ap1q ` 1pc´ 1q “ c is a valid representation of c ą 0. This solves
the problem when a “ 1 or b “ 1 so from now on we will assume that a ě 2 and b ě 2.

(b): Base Case. Since gcdpa, bq “ 1 the Euclidean Algorithm gives integers x1, y1 P Z such
that ax1 ` by1 “ 1 and from 2.2 we can assume that 0 ď x1 ă b. [Actually this is a bit easier



than 2.2 because we don’t require y1 ě 0.] If x1 “ 0 then we have by1 “ ax1 ` by1 “ 1 which
implies that b “ 1, contradicting the fact that b ě 2. Thus we must have x1 ě 1, i.e., x1´1 P N.
To complete the proof, assume for contradiction that py1 ` a ´ 1q ă 0, i.e., y1 ` a ď 0. This
implies that y1 ď ´a and hence by1 ď ´ab. Finally, since px1 ´ bq ă 0 we obtain the desired
contradiction:

1 “ ax1 ` by1 ď ax1 ´ ab “ apx1 ´ bq ă 0.

We conclude that px1 ´ 1q and py1 ` a´ 1q are natural numbers, so

apx1 ´ 1q ` bpy1 ` a´ 1q “ pax1 ` by1q ´ a` ab´ b “ ab´ a´ b` 1

is a valid pa, bq-representaiton of pab´ a´ b` 1q.

(c): Induction Step. Let n ě pab ´ a ´ b ` 1q and assume for induction that there exist
natural numbers px, yq P N2 such that ax` by “ n. In this case we want to show that n` 1 is
also pa, bq-representable. To do this, recall from part (b) that we have integers x1, y1 P Z with
the following properties:

‚ ax1 ` by1 “ 1,

‚ 1 ď x1 ď b´ 1,

‚ y1 ` a ě 1.

Now add the equations ax` by “ n and ax1 ` by1 “ 1 to obtain

apx` x1q ` bpy ` y1q “ n` 1,

where x`x1 ě 0. If we also have y`y1 ě 0 then we are done, so assume that y`y1 ă 0. Since
y1 ` a ě 1 and y ě 0 we have py ` y1 ` aq ě 1. It only remains to check that px` x1 ´ bq ě 0.
To see this we use the assumptions pn` 1q ě pab´ a´ b` 2q and py ` y1 ` 1q ď 0 to obtain

n` 1 “ apx` x1q ` bpy ` y1q ą ab´ a´ b` 2

apx` x1q ě ab´ a´ b´ bpy ` y1q ` 2

ą ab´ a´ bpy ` y1 ` 1q ` 2

ě ab´ a´ bp0q ` 2

ą ab´ a

“ apb´ 1q ą 0.

By cancelling a ą 0 from both sides of apx` x1q ą apb´ 1q we obtain px` x1q ą pb´ 1q and
hence px` x1 ´ bq ě 0 as desired. It follows that

apx` x1 ´ bq ` bpy ` y1 ` aq “ pax` byq ` pax1 ` by1q ` p´ab` abq “ n` 1` 0

is a valid pa, bq-representation of n` 1. �

[That was tricky.]

Let a, b P N be coprime with ab ‰ 0. So far you have proved that |Ra,b,pab´a´bq| “ 0 and

|Ra,b,c| ě 1 for all c ą pab´ a´ bq.

The next problem gives a rough lower bound for the total number of pa, bq-representations.



2.5. Let a, b P N be coprime with ab ‰ 0. Prove that

|Ra,b,c| ě

Y c

ab

]

“ maxtn P N : n ď c{pabqu.

[Hint: We know from class that the integer solutions of ax` by “ c have the form

px, yq “ pcx1 ´ kb, cy1 ` kaq @k P Z,

where x1, y1 P Z are some specific integers satisfying ax1`by1 “ 1. Now prove that the natural
number solutions correspond to values of k P Z such that

´cy1

a
ď k ď

cx1

b
.

Counting these integers is delicate but you should be able to give a rough bound.]

Proof. Consider a, b, c P N with gcdpa, bq “ 1. From 2.2 there exist integers x1, y1 P Z such
that ax1 ` by1 “ 1 and 0 ď x1 ă b. We know from class that the complete integer solution to
the equation ax` by “ c is given by

px, yq “ pcx1 ´ kb, cy1 ` kaq @k P Z,

and our job is to discover which of these solutions are non-negative. That is, we need to find
all integers k P Z such that the following two inequalities hold:

cx1 ´ kb ě 0

cy1 ` ka1 ě 0.

These two inequalities can be written in terms of fractions to obtain

´cy1

a
ď k ď

cx1

b
.

Each such value of k P Z corresponds to a non-negative solution of ax`by “ c, so we conclude
that |Ra,b,c| is equal to the number of integers in the closed real number interval r´cy1{a, cx1{bs.
The exact count is tricky, but the floor of the length of the interval provides a lower bound:

|Ra,b,c| ě

Z

cx1

b
´
´cy1

a

^

“

Z

cax1 ` cby1

ab

^

“

Z

cpax1 ` by1q

ab

^

“

Y c

ab

]

.

�

Unfortunately this rough bound gives us no information when c ă ab, i.e., when tc{pabqu “ 0.
With a bit more work one could compute the exact formula: for any ax1 ` by1 “ 1 we have

(˚) |Ra,b,c| “
c

ab
´

"

cy1

a

*

´

"

cx1

b

*

` 1,

where txu :“ x´ txu is the fractional part of the rational number x P Q. This formula is due
to Tiberiu Popoviciu in 1953.



2.6. Let a, b P N be coprime with ab ‰ 0. Given an integer 0 ă c ă ab such that a - c and
b - c, use Popoviciu’s formula (˚) to show that

|Ra,b,c| ` |Ra,b,pab´cq| “ 1.

[Hint: Use the fact that t´xu “ 1´ txu when x R Z.]

Proof. Consider a, b, c P N with gcdpa, bq “ 1, 0 ă c ă ab, and where a and b do not divide c.
Then for any integers ax1 ` by1 “ 1 Popoviciu’s formula gives

|Ra,b,pab´cq| “
ab´ c

ab
´

"

pab´ cqy1

a

*

´

"

pab´ cqx1

b

*

` 1

“ 2´
c

ab
´

"

by1 ´
cy1

a

*

´

"

ax1 ´
cx1

b

*

.

But now observe that for all integers n P Z and non-integer rationals x P Q we have

tn´ xu “ t´xu “ 1´ txu.

Thus the above formula becomes

|Ra,b,pab´cq| “ 2´
c

ab
´

"

by1 ´
cy1

a

*

´

"

ax1 ´
cx1

b

*

“ 2´
c

ab
´

ˆ

1´

"

cy1

a

*˙

´

ˆ

1´

"

cx1

b

*˙

“ 1´

ˆ

c

ab
´

"

cy1

a

*

´

"

cx1

b

*

` 1

˙

“ 1´ |Ra,b,c|.

�

In conclusion, one can show from 2.6 that there exist exactly pa´1qpb´1q
2 natural numbers that are

not pa, bq-representable. This fact was first proved by James Joseph Sylvester in 1884.

Proof. I didn’t ask you to show this, but here’s the proof. Let gcdpa, bq “ 1. Then we
know that every integer c ě ab is pa, bq-representable. [In fact we know that every integer
c ą pab ´ a ´ bq is representable, but we don’t need this right now.] Of the ab ` 1 elements
of the set tc P Z : 0 ď c ď abu we know that b elements are multiples of a, and a elements
are multiples of b. Furthermore, since gcdpa, bq “ 1 we know that the only elements that are
multiples of both a and b are 0 and ab. We conclude that there are exactly

pab` 1q ´ pa` b´ 2q “ pab´ a´ b` 1q “ pa´ 1qpb´ 1q

elements of the set that are not a multiple of a or b. The result of Problem 2.6 says that
exactly half of these numbers are pa, bq-representable. �

Epilogue: The proofs above are algebraic, but there is also a beautiful geometric way to think
about the Frobenius coin problem. Consider a, b P N with ab ‰ 0 and gcdpa, bq “ 1. Label
each point px, yq P Z2 of the integer lattice by the number ax ` by. Note that points on the
same line of slope ´a{b receve the same label. The problem is to count the integer points on
the line ax` by “ c that lie in the first quadrant.

For example, here is the labelling corresponding to the coprime pair pa, bq “ p5, 8q:



I have drawn the lines 5x ` 8y “ 5 ¨ 8 “ 40 and 5x ` 8y “ 0. It was relatively easy to
show that every label c ě 40 occurs in the first quadrant, but the numbers below 40 are
more tricky. I have outlined the numbers below 40 are are not multiples of 5 or 8 but are
still p5, 8q-representable. We observe that there are p5 ´ 1qp8 ´ 1q{2 “ 14 such numbers, as
expected.

I have also outlined the numbers in the fourth quadrant that are not p5, 8q-representable.
Observe that these two shapes are congruent up to 180˝ rotation, and in fact this is the
transformation c ÞÑ pab ´ cq. Observe further that the two shapes fit together perfectly to
make an pa´ 1q ˆ pb´ 1q rectangle. This is the geometric explanation for Sylvester’s formula

pa´ 1qpb´ 1q

2
.


