The Frobenius Coin Problem. Consider the equation

$$
a x+b y=c
$$

where a, b, c, x, y are natural numbers. We can think of $\$ a$ and $\$ b$ as two denominations of coins and $\$ c$ as some value that we want to pay. The equation has a solution $(x, y) \in \mathbb{N}^{2}$ if and only if we can make change for $\$ c$, and in this case we say that c is (a, b)-representable. More generally, we will consider the set of (a, b)-representations of c :

$$
R_{a, b, c}:=\left\{(x, y) \in \mathbb{N}^{2}: a x+b y=c\right\}
$$

The problem is trivial when $a b=0$ so we will always assume that $a b \neq 0$, i.e., that a and b are both nonzero.
2.1. Consider natural numbers $a, b, c \in \mathbb{N}$ with $d=\operatorname{gcd}(a, b)$, where $a=d a^{\prime}$ and $b=d b^{\prime}$.
(a) If $d \nmid c$ prove that $R_{a, b, c}=\varnothing$.
(b) If $d \mid c$ with $c=d c^{\prime}$ prove that $R_{a, b, c}=R_{a^{\prime}, b^{\prime}, c^{\prime}}$. [Unlike the case of Diophantine equations, it is possible that both of these sets could be empty.]

Proof. (a): Let $d \nmid c$ and assume for contradiction that $R_{a, b, c}$ is not empty, i.e., assume that there exists a pair of natural numbers $(x, y) \in \mathbb{N}^{2}$ such that $a x+b y=c$. But then we have

$$
\begin{aligned}
c & =a x+b y \\
& =\left(d a^{\prime}\right) x+b\left(d b^{\prime}\right) \\
& =d\left(a^{\prime} x+b^{\prime} y\right),
\end{aligned}
$$

which contradicts the fact that $d \nmid c$.
(b): Now suppose that $d \mid c$ so that $c=d c^{\prime}$ for some $c^{\prime} \in \mathbb{Z}$. Since c and d are both positive we must have $c^{\prime} \in \mathbb{N}$. To show that $R_{a^{\prime}, b^{\prime}, c^{\prime}} \subseteq R_{a, b, c}$ consider any $(x, y) \in \mathbb{N}^{2}$, so that $a^{\prime} x+b^{\prime} y=c^{\prime}$. Then we have

$$
\begin{aligned}
a^{\prime} x+b^{\prime} y & =c^{\prime} \\
d\left(a^{\prime} x+b^{\prime} y\right) & =d\left(c^{\prime}\right) \\
\left(d a^{\prime}\right) x+\left(d b^{\prime}\right) y & =\left(d c^{\prime}\right) \\
a x+b y & =c,
\end{aligned}
$$

which says that $(x, y) \in R_{a, b, c}$ as desired. Conversely, consider any $(x, y) \in R_{a, b, c}$, so that $a x+b y=c$. Then we have

$$
\begin{aligned}
a x+b y & =c \\
\left(d a^{\prime}\right) x+\left(d b^{\prime}\right) y & =\left(d c^{\prime}\right) \\
d\left(a^{\prime} x+b^{\prime} y\right) & =d\left(c^{\prime}\right) \\
a^{\prime} x+b^{\prime} y & =c^{\prime},
\end{aligned}
$$

which says that $(x, y) \in R_{a^{\prime}, b^{\prime}, c^{\prime}}$. (The last step used multiplicative cancellation.)

The previous result allows us to restrict our attention to coprime a and b.
2.2. Let $a, b, c \in \mathbb{N}$ with $a b \neq 0$ and $\operatorname{gcd}(a, b)=1$. If $R_{a, b, c} \neq \varnothing$ (i.e., if c is ($\left.a, b\right)$-representable) prove that there exists a unique representation $(u, v) \in R_{a, b, c}$ with the property

$$
0 \leqslant u<b
$$

[Hint: For existence, let $(x, y) \in R_{a, b, c}$ be an arbitrary solution. Since $b \neq 0$ there exists a quotient and remainder of $x \bmod b$. For uniqueness, use the coprimality of a and b to apply Euclid's Lemma.]

Proof. If $R_{a, b, c} \neq \varnothing$ then there exists some pair $(x, y) \in \mathbb{N}^{2}$ such that $a x+b y=c$. Since $b \neq 0$ there exists a pair of integers $q, r \in \mathbb{Z}$ such that

$$
\left\{\begin{array}{l}
x=q b+r \\
0 \leqslant r<x
\end{array}\right.
$$

Then substituting $x=q b+r$ gives

$$
\begin{aligned}
a x+b y & =c \\
a(q b+r)+b y & =c \\
a r+b(q+y) & =c .
\end{aligned}
$$

It only remains to check that $(u, v):=(r, q+y) \in \mathbb{N}^{2}$ and we already know that $r \in \mathbb{N}$. Since $r<x$ we also have $q b=(x-r)>0$, which since $b>0$ implies that $q>0$. But then since $y \in \mathbb{N}$ we have $q+y \in \mathbb{N}$ as desired. This proves existence.

For uniqueness, assume that we have $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ in $R_{a, b, c}$ with $0 \leqslant u_{1}<b$ and $0 \leqslant u_{2}<b$. Then since $a u_{1}+b v_{1}=c=a u_{2}+b v_{2}$ we see that

$$
\begin{aligned}
a u_{1}+b v_{1} & =a u_{2}+b v_{2} \\
a\left(u_{1}-u_{2}\right) & =b\left(v_{2}-v_{1}\right),
\end{aligned}
$$

which implies that b divides $a\left(u_{1}-u_{2}\right)$. But then since $\operatorname{gcd}(a, b)=1$, Euclid's Lemma says that $b \mid\left(u_{1}-u_{2}\right)$. If $\left(u_{1}-u_{2}\right)=0$ then we are done. Otherwise, suppose without loss of generality that $u_{1}-u_{2}>0$. Then the fact that $b \mid\left(u_{1}-u_{2}\right)$ implies that

$$
b \leqslant u_{1}-u_{2} \leqslant u_{1}
$$

which contradicts the fact that $u_{1}<b$. This contradiction shows that $\left(u_{1}-u_{2}\right)=0$ and then the equation $b\left(v_{2}-v_{1}\right)=a\left(u_{1}-u_{2}\right)=a \cdot 0=0$ together with the fact $b \neq 0$ implies that $\left(v_{2}-v_{1}\right)=0$ as desired.
2.3. Let $a, b \in \mathbb{N}$ be coprime with $a b \neq 0$. If $c=(a b-a-b)$ prove that $R_{a, b, c}=\varnothing$. That is, prove that the number $(a b-a-b)$ is not (a, b)-representable. [Hint: Let $c=(a b-a-b)$ and assume for contradiction there exists a representation $(x, y) \in R_{a, b, c}$. Show that the cases $x<b$ and $x \geqslant b$ both lead to the contradiction $y<0$. You can use 2.2 for the case $x<b$.]

Proof. Assume for contradiction that we have a representation $a x+b y=(a b-a-b)$ with $(x, y) \in \mathbb{N}^{2}$. From 2.2 this implies that there exists a representation $a u+b v=(a b-a-b)$
with $(u, v) \in \mathbb{N}^{2}$ and $0 \leqslant u<b$. Now observe that

$$
\begin{aligned}
a u+b v & =a b-a-b \\
a u+a & =a b-b-b v \\
a(u+1) & =b(a-1-v) .
\end{aligned}
$$

The last equation says that b divides $a(u+1)$ and then since a and b are coprime we obtain $b \mid(u+1)$ from Euclid's Lemma. Since $u+1>0$ this implies that $b \leqslant u+1$ [this argument is in the notes] but we already know that $u<b$ (i.e., $u+1 \leqslant b$) so we conclude that $u+1=b$. Finally, we substitute $u=b-1$ to obtain

$$
\begin{aligned}
a u+b v & =a b-a-b \\
a(b-1)+b v & =a b-a-b \\
a b-a+b v & =a b-a-b \\
b v & =-b \\
v & =-1,
\end{aligned}
$$

which contradicts the fact that $v \in \mathbb{N}$.

[Sorry I didn't follow my own hint very closely.]

2.4. Let $a, b \in \mathbb{N}$ be coprime with $a b \neq 0$. In this exercise you will prove by induction that every number $c>(a b-a-b)$ is (a, b)-representable.
(a) Prove the result when $a=1$ or $b=1$.
(b) From now on we will assume that $a \geqslant 2$ and $b \geqslant 2$. In this case prove that the number $(a b-a-b+1)$ is (a, b)-representable. [Hint: From the Euclidean Algorithm and 2.2 there exist $x^{\prime}, y^{\prime} \in \mathbb{Z}$ with $a x^{\prime}+b y^{\prime}=1$ and $0 \leqslant x^{\prime}<b-1$. Prove that $\left(x^{\prime}-1\right) \in \mathbb{N}$ and $\left(y^{\prime}+a-1\right) \in \mathbb{N}$, and hence

$$
a\left(x^{\prime}-1\right)+b\left(y^{\prime}+a-1\right)=(a b-a-b+1)
$$

is a valid representation.]
(c) Let $n \geqslant(a b-a-b+1)$ and assume for induction that n is (a, b)-representable. In this case prove that $n+1$ is also (a, b)-representable. [Hint: Let x^{\prime}, y^{\prime} be as in part (b). By the induction hypothesis and 2.2 there exist $x, y \in \mathbb{N}$ with $a x+b y=n$ and $0 \leqslant x<b$. Note that

$$
a\left(x+x^{\prime}\right)+b\left(y+y^{\prime}\right)=(n+1) .
$$

If $y+y^{\prime} \geqslant 0$ then you are done. Otherwise, show that

$$
a\left(x+x^{\prime}-b\right)+b\left(y+y^{\prime}+a\right)=(n+1)
$$

is a valid representation.]
Proof. (a): Since the problem is symmetric in a and b we will assume without loss of generality that $b=1$. Now we want to show that every number $c>(a-a-1)=-1$, i.e., every number $c \geqslant 0$ is $(a, 1)$-representable. But this is certainly true because $a(0)+1(0)=0$ is a valid representation of $c=0$ and $a(1)+1(c-1)=c$ is a valid representation of $c>0$. This solves the problem when $a=1$ or $b=1$ so from now on we will assume that $a \geqslant 2$ and $b \geqslant 2$.
(b): Base Case. Since $\operatorname{gcd}(a, b)=1$ the Euclidean Algorithm gives integers $x^{\prime}, y^{\prime} \in \mathbb{Z}$ such that $a x^{\prime}+b y^{\prime}=1$ and from 2.2 we can assume that $0 \leqslant x^{\prime}<b$. [Actually this is a bit easier
than 2.2 because we don't require $y^{\prime} \geqslant 0$.] If $x^{\prime}=0$ then we have $b y^{\prime}=a x^{\prime}+b y^{\prime}=1$ which implies that $b=1$, contradicting the fact that $b \geqslant 2$. Thus we must have $x^{\prime} \geqslant 1$, i.e., $x^{\prime}-1 \in \mathbb{N}$. To complete the proof, assume for contradiction that $\left(y^{\prime}+a-1\right)<0$, i.e., $y^{\prime}+a \leqslant 0$. This implies that $y^{\prime} \leqslant-a$ and hence $b y^{\prime} \leqslant-a b$. Finally, since $\left(x^{\prime}-b\right)<0$ we obtain the desired contradiction:

$$
1=a x^{\prime}+b y^{\prime} \leqslant a x^{\prime}-a b=a\left(x^{\prime}-b\right)<0 .
$$

We conclude that $\left(x^{\prime}-1\right)$ and $\left(y^{\prime}+a-1\right)$ are natural numbers, so

$$
a\left(x^{\prime}-1\right)+b\left(y^{\prime}+a-1\right)=\left(a x^{\prime}+b y^{\prime}\right)-a+a b-b=a b-a-b+1
$$

is a valid (a, b)-representaiton of $(a b-a-b+1)$.
(c): Induction Step. Let $n \geqslant(a b-a-b+1)$ and assume for induction that there exist natural numbers $(x, y) \in \mathbb{N}^{2}$ such that $a x+b y=n$. In this case we want to show that $n+1$ is also (a, b)-representable. To do this, recall from part (b) that we have integers $x^{\prime}, y^{\prime} \in \mathbb{Z}$ with the following properties:

- $a x^{\prime}+b y^{\prime}=1$,
- $1 \leqslant x^{\prime} \leqslant b-1$,
- $y^{\prime}+a \geqslant 1$.

Now add the equations $a x+b y=n$ and $a x^{\prime}+b y^{\prime}=1$ to obtain

$$
a\left(x+x^{\prime}\right)+b\left(y+y^{\prime}\right)=n+1,
$$

where $x+x^{\prime} \geqslant 0$. If we also have $y+y^{\prime} \geqslant 0$ then we are done, so assume that $y+y^{\prime}<0$. Since $y^{\prime}+a \geqslant 1$ and $y \geqslant 0$ we have $\left(y+y^{\prime}+a\right) \geqslant 1$. It only remains to check that $\left(x+x^{\prime}-b\right) \geqslant 0$. To see this we use the assumptions $(n+1) \geqslant(a b-a-b+2)$ and $\left(y+y^{\prime}+1\right) \leqslant 0$ to obtain

$$
\begin{aligned}
n+1=a\left(x+x^{\prime}\right)+b\left(y+y^{\prime}\right) & >a b-a-b+2 \\
a\left(x+x^{\prime}\right) & \geqslant a b-a-b-b\left(y+y^{\prime}\right)+2 \\
& >a b-a-b\left(y+y^{\prime}+1\right)+2 \\
& \geqslant a b-a-b(0)+2 \\
& >a b-a \\
& =a(b-1)>0 .
\end{aligned}
$$

By cancelling $a>0$ from both sides of $a\left(x+x^{\prime}\right)>a(b-1)$ we obtain $\left(x+x^{\prime}\right)>(b-1)$ and hence $\left(x+x^{\prime}-b\right) \geqslant 0$ as desired. It follows that

$$
a\left(x+x^{\prime}-b\right)+b\left(y+y^{\prime}+a\right)=(a x+b y)+\left(a x^{\prime}+b y^{\prime}\right)+(-a b+a b)=n+1+0
$$

is a valid (a, b)-representation of $n+1$.

[That was tricky.]

Let $a, b \in \mathbb{N}$ be coprime with $a b \neq 0$. So far you have proved that $\left|R_{a, b,(a b-a-b)}\right|=0$ and

$$
\left|R_{a, b, c}\right| \geqslant 1 \text { for all } c>(a b-a-b) .
$$

The next problem gives a rough lower bound for the total number of (a, b)-representations.
2.5. Let $a, b \in \mathbb{N}$ be coprime with $a b \neq 0$. Prove that

$$
\left|R_{a, b, c}\right| \geqslant\left\lfloor\frac{c}{a b}\right\rfloor=\max \{n \in \mathbb{N}: n \leqslant c /(a b)\} .
$$

[Hint: We know from class that the integer solutions of $a x+b y=c$ have the form

$$
(x, y)=\left(c x^{\prime}-k b, c y^{\prime}+k a\right) \quad \forall k \in \mathbb{Z},
$$

where $x^{\prime}, y^{\prime} \in \mathbb{Z}$ are some specific integers satisfying $a x^{\prime}+b y^{\prime}=1$. Now prove that the natural number solutions correspond to values of $k \in \mathbb{Z}$ such that

$$
\frac{-c y^{\prime}}{a} \leqslant k \leqslant \frac{c x^{\prime}}{b} .
$$

Counting these integers is delicate but you should be able to give a rough bound.]

Proof. Consider $a, b, c \in \mathbb{N}$ with $\operatorname{gcd}(a, b)=1$. From 2.2 there exist integers $x^{\prime}, y^{\prime} \in \mathbb{Z}$ such that $a x^{\prime}+b y^{\prime}=1$ and $0 \leqslant x^{\prime}<b$. We know from class that the complete integer solution to the equation $a x+b y=c$ is given by

$$
(x, y)=\left(c x^{\prime}-k b, c y^{\prime}+k a\right) \quad \forall k \in \mathbb{Z},
$$

and our job is to discover which of these solutions are non-negative. That is, we need to find all integers $k \in \mathbb{Z}$ such that the following two inequalities hold:

$$
\begin{aligned}
c x^{\prime}-k b & \geqslant 0 \\
c y^{\prime}+k a^{\prime} & \geqslant 0 .
\end{aligned}
$$

These two inequalities can be written in terms of fractions to obtain

$$
\frac{-c y^{\prime}}{a} \leqslant k \leqslant \frac{c x^{\prime}}{b} .
$$

Each such value of $k \in \mathbb{Z}$ corresponds to a non-negative solution of $a x+b y=c$, so we conclude that $\left|R_{a, b, c}\right|$ is equal to the number of integers in the closed real number interval $\left[-c y^{\prime} / a, c x^{\prime} / b\right]$. The exact count is tricky, but the floor of the length of the interval provides a lower bound:

$$
\begin{aligned}
\left|R_{a, b, c}\right| & \geqslant\left\lfloor\frac{c x^{\prime}}{b}-\frac{-c y^{\prime}}{a}\right\rfloor \\
& =\left\lfloor\frac{c a x^{\prime}+c b y^{\prime}}{a b}\right\rfloor \\
& =\left\lfloor\frac{c\left(a x^{\prime}+b y^{\prime}\right)}{a b}\right\rfloor=\left\lfloor\frac{c}{a b}\right\rfloor .
\end{aligned}
$$

Unfortunately this rough bound gives us no information when $c<a b$, i.e., when $\lfloor c /(a b)\rfloor=0$. With a bit more work one could compute the exact formula: for any $a x^{\prime}+b y^{\prime}=1$ we have

$$
\begin{equation*}
\left|R_{a, b, c}\right|=\frac{c}{a b}-\left\{\frac{c y^{\prime}}{a}\right\}-\left\{\frac{c x^{\prime}}{b}\right\}+1 \tag{*}
\end{equation*}
$$

where $\{x\}:=x-\lfloor x\rfloor$ is the fractional part of the rational number $x \in \mathbb{Q}$. This formula is due to Tiberiu Popoviciu in 1953.
2.6. Let $a, b \in \mathbb{N}$ be coprime with $a b \neq 0$. Given an integer $0<c<a b$ such that $a \nmid c$ and $b \nmid c$, use Popoviciu's formula (*) to show that

$$
\left|R_{a, b, c}\right|+\left|R_{a, b,(a b-c)}\right|=1
$$

[Hint: Use the fact that $\{-x\}=1-\{x\}$ when $x \notin \mathbb{Z}$.]
Proof. Consider $a, b, c \in \mathbb{N}$ with $\operatorname{gcd}(a, b)=1,0<c<a b$, and where a and b do not divide c. Then for any integers $a x^{\prime}+b y^{\prime}=1$ Popoviciu's formula gives

$$
\begin{aligned}
\left|R_{a, b,(a b-c)}\right| & =\frac{a b-c}{a b}-\left\{\frac{(a b-c) y^{\prime}}{a}\right\}-\left\{\frac{(a b-c) x^{\prime}}{b}\right\}+1 \\
& =2-\frac{c}{a b}-\left\{b y^{\prime}-\frac{c y^{\prime}}{a}\right\}-\left\{a x^{\prime}-\frac{c x^{\prime}}{b}\right\} .
\end{aligned}
$$

But now observe that for all integers $n \in \mathbb{Z}$ and non-integer rationals $x \in \mathbb{Q}$ we have

$$
\{n-x\}=\{-x\}=1-\{x\} .
$$

Thus the above formula becomes

$$
\begin{aligned}
\left|R_{a, b,(a b-c)}\right| & =2-\frac{c}{a b}-\left\{b y^{\prime}-\frac{c y^{\prime}}{a}\right\}-\left\{a x^{\prime}-\frac{c x^{\prime}}{b}\right\} \\
& =2-\frac{c}{a b}-\left(1-\left\{\frac{c y^{\prime}}{a}\right\}\right)-\left(1-\left\{\frac{c x^{\prime}}{b}\right\}\right) \\
& =1-\left(\frac{c}{a b}-\left\{\frac{c y^{\prime}}{a}\right\}-\left\{\frac{c x^{\prime}}{b}\right\}+1\right) \\
& =1-\left|R_{a, b, c}\right| .
\end{aligned}
$$

In conclusion, one can show from 2.6 that there exist exactly $\frac{(a-1)(b-1)}{2}$ natural numbers that are not (a, b)-representable. This fact was first proved by James Joseph Sylvester in 1884.

Proof. I didn't ask you to show this, but here's the proof. Let $\operatorname{gcd}(a, b)=1$. Then we know that every integer $c \geqslant a b$ is (a, b)-representable. [In fact we know that every integer $c>(a b-a-b)$ is representable, but we don't need this right now.] Of the $a b+1$ elements of the set $\{c \in \mathbb{Z}: 0 \leqslant c \leqslant a b\}$ we know that b elements are multiples of a, and a elements are multiples of b. Furthermore, since $\operatorname{gcd}(a, b)=1$ we know that the only elements that are multiples of both a and b are 0 and $a b$. We conclude that there are exactly

$$
(a b+1)-(a+b-2)=(a b-a-b+1)=(a-1)(b-1)
$$

elements of the set that are not a multiple of a or b. The result of Problem 2.6 says that exactly half of these numbers are (a, b)-representable.

Epilogue: The proofs above are algebraic, but there is also a beautiful geometric way to think about the Frobenius coin problem. Consider $a, b \in \mathbb{N}$ with $a b \neq 0$ and $\operatorname{gcd}(a, b)=1$. Label each point $(x, y) \in \mathbb{Z}^{2}$ of the integer lattice by the number $a x+b y$. Note that points on the same line of slope $-a / b$ receve the same label. The problem is to count the integer points on the line $a x+b y=c$ that lie in the first quadrant.
For example, here is the labelling corresponding to the coprime pair $(a, b)=(5,8)$:

I have drawn the lines $5 x+8 y=5 \cdot 8=40$ and $5 x+8 y=0$. It was relatively easy to show that every label $c \geqslant 40$ occurs in the first quadrant, but the numbers below 40 are more tricky. I have outlined the numbers below 40 are are not multiples of 5 or 8 but are still $(5,8)$-representable. We observe that there are $(5-1)(8-1) / 2=14$ such numbers, as expected.

I have also outlined the numbers in the fourth quadrant that are not (5,8)-representable. Observe that these two shapes are congruent up to 180° rotation, and in fact this is the transformation $c \mapsto(a b-c)$. Observe further that the two shapes fit together perfectly to make an $(a-1) \times(b-1)$ rectangle. This is the geometric explanation for Sylvester's formula

$$
\frac{(a-1)(b-1)}{2} .
$$

