The Frobenius Coin Problem. Consider the equation

$$
a x+b y=c
$$

where a, b, c, x, y are natural numbers. We can think of $\$ a$ and $\$ b$ as two denominations of coins and $\$ c$ as some value that we want to pay. The equation has a solution $(x, y) \in \mathbb{N}^{2}$ if and only if we can make change for $\$ c$, and in this case we say that c is (a, b)-representable. More generally, we will consider the set of (a, b)-representations of c :

$$
R_{a, b, c}:=\left\{(x, y) \in \mathbb{N}^{2}: a x+b y=c\right\}
$$

The problem is trivial when $a b=0$ so we will always assume that $a b \neq 0$, i.e., that a and b are both nonzero.
2.1. Consider natural numbers $a, b, c \in \mathbb{N}$ with $d=\operatorname{gcd}(a, b)$, where $a=d a^{\prime}$ and $b=d b^{\prime}$.
(a) If $d \nmid c$ prove that $R_{a, b, c}=\varnothing$.
(b) If $d \mid c$ with $c=d c^{\prime}$ prove that $R_{a, b, c}=R_{a^{\prime}, b^{\prime}, c^{\prime}}$. [Unlike the case of Diophantine equations, it is possible that both of these sets could be empty.]

The previous result allows us to restrict our attention to coprime a and b.
2.2. Let $a, b, c \in \mathbb{N}$ with $a b \neq 0$ and $\operatorname{gcd}(a, b)=1$. If $R_{a, b, c} \neq \varnothing$ (i.e., if c is (a, b)-representable) prove that there exists a unique representation $(u, v) \in R_{a, b, c}$ with the property

$$
0 \leqslant u<b-1 .
$$

[Hint: For existence, let $(x, y) \in R_{a, b, c}$ be an arbitrary solution. Since $b \neq 0$ there exists a quotient and remainder of $x \bmod b$. For uniqueness, use the coprimality of a and b to apply Euclid's Lemma.]
2.3. Let $a, b \in \mathbb{N}$ be coprime with $a b \neq 0$. If $c=(a b-a-b)$ prove that $R_{a, b, c}=\varnothing$. That is, prove that the number $(a b-a-b)$ is not (a, b)-representable. [Hint: Let $c=(a b-a-b)$ and assume for contradiction there exists a representation $(x, y) \in R_{a, b, c}$. Show that the cases $x<b$ and $x \geqslant b$ both lead to the contradiction $y<0$. You can use 2.2 for the case $x<b$.]
2.4. Let $a, b \in \mathbb{N}$ be coprime with $a b \neq 0$. In this exercise you will prove by induction that every number $c>(a b-a-b)$ is (a, b)-representable.
(a) Prove the result when $a=1$ or $b=1$.
(b) From now on we will assume that $a \geqslant 2$ and $b \geqslant 2$. In this case prove that the number $(a b-a-b+1)$ is (a, b)-representable. [Hint: From the Euclidean Algorithm and 2.2 there exist $x^{\prime}, y^{\prime} \in \mathbb{Z}$ with $a x^{\prime}+b y^{\prime}=1$ and $0 \leqslant x^{\prime}<b-1$. Prove that $\left(x^{\prime}-1\right) \in \mathbb{N}$ and $\left(y^{\prime}+a-1\right) \in \mathbb{N}$, and hence

$$
a\left(x^{\prime}-1\right)+b\left(y^{\prime}+a-1\right)=(a b-a-b+1)
$$

is a valid representation.]
(c) Let $n \geqslant(a b-a-b+1)$ and assume for induction that n is (a, b)-representable. In this case prove that $n+1$ is also (a, b)-representable. [Hint: Let x^{\prime}, y^{\prime} be as in part (b). By the induction hypothesis and 2.2 there exist $x, y \in \mathbb{N}$ with $a x+b y=n$ and $0 \leqslant x<b$. Note that

$$
a\left(x+x^{\prime}\right)+b\left(y+y^{\prime}\right)=(n+1) .
$$

If $y+y^{\prime} \geqslant 0$ then you are done. Otherwise, show that

$$
a\left(x+x^{\prime}-b\right)+b\left(y+y^{\prime}+a\right)=(n+1)
$$

is a valid representation.]
Let $a, b \in \mathbb{N}$ be coprime with $a b \neq 0$. So far you have proved that $\left|R_{a, b,(a b-a-b)}\right|=0$ and

$$
\left|R_{a, b, c}\right| \geqslant 1 \text { for all } c>(a b-a-b) .
$$

The next problem gives a rough lower bound for the total number of (a, b)-representations.
2.5. Let $a, b \in \mathbb{N}$ be coprime with $a b \neq 0$. Prove that

$$
\left|R_{a, b, c}\right| \geqslant\left\lfloor\frac{c}{a b}\right\rfloor=\max \{n \in \mathbb{N}: n \leqslant c /(a b)\} .
$$

[Hint: We know from class that the integer solutions of $a x+b y=c$ have the form

$$
(x, y)=\left(x^{\prime}+k b^{\prime}, y^{\prime}-k a^{\prime}\right) \quad \forall k \in \mathbb{Z},
$$

where $x^{\prime}, y^{\prime} \in \mathbb{Z}$ are some specific integers satisfying $a x^{\prime}+b y^{\prime}=1$. By 2.2 you can assume that $x^{\prime}>0$ and $y^{\prime}<0$. Now prove that the natural number solutions correspond to values of $k \in \mathbb{Z}$ such that

$$
\frac{c\left(-y^{\prime}\right)}{a} \leqslant k \leqslant \frac{c x^{\prime}}{b} .
$$

Counting these integers is delicate but you should be able to give a rough bound.]
Unfortunately this rough bound gives us no information when $c<a b$, i.e., when $\lfloor c /(a b)\rfloor=0$. With a bit more work one could compute the exact formula: for any $a x^{\prime}+b y^{\prime}=1$ we have

$$
\begin{equation*}
\left|R_{a, b, c}\right|=\frac{c}{a b}-\left\{\frac{c y^{\prime}}{a}\right\}-\left\{\frac{c x^{\prime}}{b}\right\}+1, \tag{*}
\end{equation*}
$$

where $\{x\}:=x-\lfloor x\rfloor$ is the fractional part of the rational number $x \in \mathbb{Q}$. This formula is due to Tiberiu Popoviciu in 1953.
2.6. Let $a, b \in \mathbb{N}$ be coprime with $a b \neq 0$. Given an integer $0<c<a b$ such that $a \nmid c$ and $b \nmid c$, use Popoviciu's formula (*) to show that

$$
\left|R_{a, b, c}\right|+\left|R_{a, b,(a b-c)}\right|=1 .
$$

[Hint: Use the fact that $\{-x\}=1-\{x\}$ when $x \notin \mathbb{Z}$.]
In conclusion, one can show from 2.6 that there exist exactly $\frac{(a-1)(b-1)}{2}$ natural numbers that are not (a, b)-representable. This fact was first proved by James Joseph Sylvester in 1884.

