
MTH 505: Number Theory Spring 2017
Homework 1 Drew Armstrong

1.1. From pN, σ, 0q to pN,`, ¨, 0, 1q. Recall Peano’s four axioms for the natural numbers:

(P1) There exists a special element called 0 P N.

(P2) The element 0 is not the successor of any number, i.e.,

@n P N, σpnq ‰ 0.

(P3) Every number has a unique successor, i.e.,

@m,n P N, pσpmq “ σpnqq ñ pm “ nq.

(P4) The Induction Principle. If a set of natural numbers S Ď N contains 0 and is closed
under succession, then we must have S “ N. In other words, if we have

– 0 P S,

– @n P N, pn P Sq ñ pσpnq P Sq,

then it follows that S “ N.

It is strange that these axioms do not tell us how to add or multiply numbers. In this prob-
lem you will investige the steps involved when unpacking Peano’s axioms into the structure
pN,`, ¨, 0, 1q.

(a) Lemma. If n P N and n ‰ 0, show that there exists a unique m P N such that
σpmq “ n. We call this m the predecessor of n.

This lemma allows us to define the binary operations `, ¨ : NˆNÑ N recursively, as follows:

a` 0 :“ a, (1)

a` σpbq :“ σpa` bq, (2)

a ¨ 0 :“ 0, (3)

a ¨ σpbq :“ pa ¨ bq ` a. (4)

Now you will prove that ` and ¨ have the desired properties. It is important to prove the
following results in the suggested order or you might get stuck. Induction is your only tool,
so for each problem you should define a certain set of natural numbers S Ď N and then prove
that S “ N. For example, in part (a) you should fix a, b P N and then let S Ď N be the set of
c P N such that a` pb` cq “ pa` bq ` c.

(b) Associativity of Addition. Show that for all a, b, c P N we have a`pb`cq “ pa`bq`c.

(c) Lemma. Show that a` 0 “ 0` a and a` σp0q “ σp0q ` a for all a P N.

(d) Commutativity of Addition. Show that for all a, b P N we have a` b “ b` a.

(e) Distributive Law. Show that for all a, b, c P N we have apb` cq “ ab` ac.

(f) Associativity of Multiplication. Show that for all a, b, c P N we have apbcq “ pabqc.

(g) Lemma. Show that for all a, b P N we have σpaqb “ ab` b. [Hint: Induction on b.]

(h) Commutativity of Multiplication. Show that for all a, b P N we have ab “ ba.
[Hint: Prove the base case by induction, then use Lemma (g).]



Proof. (a) Lemma. The induction step here is trivial; it’s the base case that’s slightly tricky.
Let S Ď N be the set of natural numbers that have a predecessor and let S1 :“ S Y t0u. If we
can prove that S1 “ N then it will follow that every nonzero natural number has a predecessor.
First note that 0 P S1 by definition. Now assume for induction that n P S1. In this case the
number σpnq obviously has the predecessor n and hence σpnq P S Ď S1. By (P4) we conclude
that S1 “ N as desired. Furthermore, if σpm1q “ n “ σpm2q for two numbers m1,m2 then it
follows from (P3) that m1 “ m2, and we conclude that the predecessor of n is unique.

(b) Associativity of Addition. Fix a, b P N and let S Ď N be the set of natural numbers
c P N such that a` pb` cq “ pa` bq ` c. We want to prove that S “ N. First note that 0 P S
because

a` pb` 0q “ a` b p1q

“ pa` bq ` 0. p1q

Now suppose that n P S so that a` pb` nq “ pa` bq ` n. In this case we must also have

a` pb` σpnqq “ a` σpb` nq p2q

“ σpa` pb` nqq p2q

“ σppa` bq ` nq n P S

“ pa` bq ` σpnq, p2q

which means that σpnq P S. We conclude from (P4) that S “ N as desired.

(c) Lemma. Let S Ď N be the set of natural numbers a P N such that a` 0 “ 0` a and let
T Ď N be the set of natural numbers a P N such that a` σp0q “ σp0q ` a. We will show that
S “ T “ N. First note that 0 P S because equation (1) says that 0 ` 0 “ 0. Now suppose
that n P S so that 0` n “ n` 0. In this case we also have

0` σpnq “ σp0` nq p2q

“ σpn` 0q n P S

“ σpnq p1q

“ σpnq ` 0, p1q

and hence σpnq P S. We conclude from (P4) that S “ N as desired.

To show that T “ N we first use the fact that σp0q P N “ S tells us that (i.e., σp0q`0 “ 0`σp0q)
which tells us that 0 P T . Now suppose that n P T so that n` σp0q “ σp0q ` n. In this case
we must also have

σp0q ` σpnq “ σp0q ` σpn` 0q p1q

“ σp0q ` pn` σp0qq p2q

“ pσp0q ` nq ` σp0q pbq

“ pn` σp0qq ` σp0q n P S

“ σpn` 0q ` σp0q p2q

“ σpnq ` σp0q, p1q

and hence σpnq P T . From (P4) it follows that T “ N as desired.

(d) Commutativity of Addition. Fix a P N and let S Ď N be the set of natural numbers
b P N such that a` b “ b` a. We will show that S “ N. First recall from part (c) that 0 P S.



Now suppose that n P S so that a` n “ n` a. In this case we also have

a` σpnq “ σpa` nq p2q

“ σpn` aq n P S

“ n` σpaq p2q

“ n` σpa` 0q p1q

“ n` pa` σp0qq p2q

“ n` pσp0q ` aq pcq

“ pn` σp0qq ` a pbq

“ σpn` 0q ` a p2q

“ σpnq ` a, p1q

and hence σpnq P S. From (P4) we conclude that S “ N as desired.

(e) Distributive Law. Fix a, b P N and let S Ď N be the set of c P N such that apb ` cq “
ab` ac. We will show that S “ N. First note that 0 P S because

apb` 0q “ ab p1q

“ ab` 0 p1q

“ ab` a0. p3q

Now assume that n P S so that apb` nq “ ab` an. In this case we must also have

apb` σpnqq “ aσpb` nq p2q

“ apb` nq ` a p4q

“ pab` anq ` a n P S

“ ab` pan` aq pbq

“ ab` aσpnq, p4q

and hence σpnq P S. From (P4) we conclude that S “ N as desired.

(f) Associativity of Multiplication. Fix a, b P N and let S Ď N be the set of c P N such
that apbcq “ pabqc. We will show that S “ N. First note that 0 P S because

apb0q “ a0 p3q

“ 0 p3q

“ pabq0. p3q

Now assume that n P S so that apbnq “ pabqn. In this case we must also have

apbσpnqq “ apbn` bq p4q

“ apbnq ` ab peq

“ pabqn` ab n P S

“ pabqσpnq, p4q

and hence σpnq P S. From (P4) we conclude that S “ N as desired.

(g) Lemma. Fix a P N and let S Ď N be the set of b P N such that σpaqb “ ab ` b. We will
show that S “ N. First note that 0 P S because

σpaq0 “ 0 p3q

“ a0 p3q

“ a0` 0. p1q



Now suppose that n P S so that σpaqn “ an` n. In this case we must also have

σpaqσpnq “ σpaqn` σpaq p4q

“ pan` nq ` σpaq n P S

“ an` pn` σpaqq pbq

“ an` σpn` aq p2q

“ an` σpa` nq pdq

“ an` pa` σpnqq p2q

“ pan` aq ` σpnq pbq

“ aσpnq ` σpnq, p4q

and hence σpnq P S. From (P4) we conclude that S “ N as desired.

(h) Commutativity of Multiplication. Finally, fix a P N and let S Ď N be the set of b P N
such that ab “ ba. We will show that S “ N. First we will show that 0 P S. To do this, let
T Ď N be the set of a P N such that a0 “ 0a. Note that 0 P T by property (3) and assume
that n P T so that n0 “ 0n. It then follows that

0σpnq “ 0n` 0 p4q

“ 0n p1q

“ n0 n P T

“ 0 p3q

“ σpnq0, p3q

and hence σpnq P T . By (P4) we conclude that T “ N and hence 0 P S. Now suppose that
n P S so that an “ na. In this case we must also have

aσpnq “ an` a p4q

“ na` a n P S

“ σpnqa, pfq

and hence σpnq P S. From (P4) we conclude that S “ N as desired. �

[Remark: That was kind of tricky right? And we didn’t even try to investigate the properties of
the total ordering pN,ďq.]

1.2. From pN,`, ¨, 0, 1q to pZ,`, ¨, 0, 1q. The integers are obtained from the natural numbers
by “formally adjoining additive inverses”. This problem will investigate the steps involved.
Let pN,`, ¨, 0, 1q be the structure obtained from Problem 1.1. You can ignore the successor
function now and just write n ` 1 instead of σpnq. Let Z denote the set of ordered pairs of
natural numbers:

Z “ tra, bs : a, b P Nu.

(a) Prove that the following rule defines an equivalence relation on Z:

ra, bs „ rc, ds ðñ a` d “ b` c.

Intuition: We think of the pair ra, bs as the fictional number “a´ b”.

(b) Prove that the following binary operations on Z are well-defined on equivalence classes:

ra, bs ` rc, ds :“ ra` c, b` ds,

ra, bs ¨ rc, ds :“ rac` bd, ad` bcs.



(c) Prove that each of the operations `, ¨ : Z ˆ Z Ñ Z is commutative and associative,
and also that ¨ distributes over `.

(d) Finally, explain how to view pN,`, ¨, 0, 1q as subsystem of pZ,`, ¨, 0, 1q and show that
each element of N now has an additive inverse in the larger system.

Apology: I should have said that you are allowed to use multiplicative and additive cancel-
lation in N without proving them. Sorry.

Proof. (a) To show that „ is reflexive, note that a ` b “ a ` b implies ra, bs „ ra, bs for
all ra, bs P Z. To show that „ is symmetric, assume that we have ra, bs „ rc, ds, i.e., that
a` d “ b` c. Then by commutativity of addition in N we also have c` b “ d` a which says
that rc, ds „ ra, bs as desired. Finally, to show that „ is transitive, assume that ra, bs „ rc, ds
and rc, ds „ re, f s, i.e. that a` d “ b` c and c` f “ d` e. In this case we have

pa` fq ` d “ pa` dq ` f

“ pb` cq ` f

“ pc` fq ` b

“ pd` eq ` b

“ pb` eq ` d.

Then from additive cancellation we conclude that a` f “ e` b, i.e., that ra, bs „ re, f s.

(b) Assume that we have ra, bs „ ra1, b1s (i.e., a ` b1 “ a1 ` b) and rc, ds „ rc1, d1s (i.e.,
c` d1 “ c1 ` d). In this case we want to show that

ra, bs ` rc, ds „ ra1, b1s ` rc1, d1s,

ra, bs ¨ rc, ds „ ra1, b1s ¨ rc1, d1s.

To show the first equation recall that ra, bs ` rc, ds “ ra ` c, b ` ds and ra1, b1s ` rc1, d1s “

ra1 ` c1, b1 ` d1s. Then observe that we have

pa` cq ` pb1 ` d1q “ pa` b1q ` pc` d1q

“ pa1 ` bq ` pc1 ` dq

“ pa1 ` c1q ` pb` dq,

which tells us that ra` c, b` ds „ ra1 ` c1, b1 ` d1s as desired. Next recall that ra, bs ¨ rc, ds “
rac ` bd, ad ` bcs and ra1, b1s ¨ rc1, d1s “ ra1c1 ` b1d1, a1d1 ` b1c1s. Our goal is to show that
rac` bd, ad` bcs „ ra1c1 ` b1d1, a1d1 ` b1c1s or in other words that

pac` bdq ` pa1d1 ` b1c1q “ pa1c1 ` b1d1q ` pad` bcq. (˚)

To show this we first use the facts a` b1 “ a1 ` b and c` d1 “ c1 ` d to observe that

cpa` b1q ` dpa1 ` bq ` a1pc` d1q ` b1pc1 ` dq “ dpa` b1q ` cpa1 ` bq ` b1pc` d1q ` a1pc1 ` dq

Then we expand and rearrange each side to obtain

pac` bd` a1d1 ` b1c1q ` pb1c` a1d` a1c` b1dq “ pa1c1 ` b1d1 ` ad` bcq ` pb1c` a1d` a1c` b1dq.

Finally, we cancel pb1c` a1d` a1c` b1dq from both sides to obtain (˚) as desired.

(c) I’m going to treat this problem as optional for myself.



(d) To view pN,`, ¨, 0, 1q as a subsystem of pZ,`, ¨, 0, 1q we identify each natural number
n P N with (the eqivalence class of) the integer rn, 0s. Note that this identification is one-to-
one because we have rm, 0s „ rn, 0s if and only if m “ n. Finally, note that the identification
preserves the operations ` and ¨ because

rm, 0s ` rn, 0s “ rm` n, 0s,

rm, 0s ¨ rn, 0s “ rmn, 0s.

�

Apology: For the next problem I will freely use all of the friendly properties of Z without
proving them from the Peano axioms.

1.3. From pZ,`, ¨, 0, 1q to pQ,`, ¨, 0, 1q. The rational numbers are obtained from the natural
numbers by “formally adjoining multiplicative inverses”. This problem will investigate the
steps involved. Let pZ,`, ¨, 0, 1q be the structure obtained from Problem 1.2. But now we will
forget the language of ordered pairs and we will just write n P Z for integers. Let Q denote
the set of ordered pairs of integers in which the second entry is nonzero:

Q :“ tra, bs : a, b P Z, b ‰ 0u.

(a) Prove that the following rule defines an equivalence relation on Q:

ra, bs „ rc, ds ðñ ad “ bc.

Intuition: We think of the pair ra, bs as the fictional number “a{b”.

(b) Prove that the following binary operations on Q are well-defined on equivalence classes:

ra, bs ¨ rc, ds :“ rac, bds,

ra, bs ` rc, ds :“ rad` bc, bds.

Hence we obtain two binary operations `, ¨ : QˆQÑ Q.

(c) (Optional) Prove that each of the operations `, ¨ : Q ˆ Q Ñ Q is commutative and
associative, and also that ¨ distributes over `.

(d) Finally, explain how to view pZ,`, ¨, 0, 1q as subsystem of pQ,`, ¨, 0, 1q and show that
each nonzero element of Z now has an multiplicative inverse in the larger system.

Proof. (a) To show that „ is reflexive, note that the commutative rule ab “ ba implies that
ra, bs „ ra, bs for all ra, bs P Q. To show that „ is symmetric assume that we have ra, bs „ rc, ds,
i.e., that ad “ bc. Then by commutativity we must have cb “ da and hence rc, ds „ ra, bs.
Finally, to show that „ is transitive, assume that ra, bs „ rc, ds and rc, ds „ re, f s, i.e., that
ad “ bc and cf “ de. Recall that we also have d ‰ 0 by definition of Q. Now there are two
cases. If c “ 0 then the fact ad “ bc “ 0 together with d ‰ 0 implies a “ 0 and the fact
cf “ de “ 0 together with d ‰ 0 implies e “ 0. Then putting these together gives

af “ 0 “ be

and hence ra, bs „ re, f s as desired. On ther other hand, if c ‰ 0 then since d ‰ 0 we also have
cd ‰ 0. Then multiplying the equations ad “ bc and cf “ de gives

padqpcfq “ pbcqpdeq

pafqpcdq “ pbeqpcdq,

and cancelling the nonzero factor cd gives af “ be, and hence ra, bs „ re, f s as desired.



(b) Assume that we have ra, bs „ ra1, b1s (i.e., ab1 “ a1b) and rc, ds „ rc1, d1s (i.e., cd1 “ c1d). In
this case we want to show that

ra, bs ¨ rc, ds „ ra1, b1s ¨ rc1, d1s,

ra, bs ` rc, ds „ ra1, b1s ` rc1, d1s.

To show the first equation recall that ra, bs ¨ rc, ds “ rac, bds and ra1, b1s ¨ rc1, d1s “ ra1c1, b1d1s.
Now multiply the equations ab1 “ a1b and cd1 “ c1d to obtain

pab1qpcd1q “ pa1bqpc1dq

pacqpb1d1q “ pa1c1qpbdq,

which tells us that rac, bds „ ra1c1, b1d1s as desired. Next recall that ra, bs`rc, ds “ rad` bc, bds
and ra1, b1s ` rc1, d1s “ ra1d1 ` b1c1, b1d1s. Then we have

pad` bdqpb1d1q “ padqpb1d1q ` pbcqpb1d1q

“ pab1qpdd1q ` pcd1qpbb1q

“ pa1bqpdd1q ` pc1dqpbb1q

“ pa1d1qpbdq ` pb1c1qpbdq

“ pa1d1 ` b1c1qpbdq,

which tells us that ra, bs ` rc, ds „ ra1, b1s ` rc1, d1s as desired.

(c) This was optional for everyone (including me).

(d) To view pZ,`, ¨, 0, 1q as a subsystem of pQ,`, ¨, 0, 1q we identify each integer n P Z with
(the equivalence class of) the rational number rn, 1s. Note that this identification is one-to-one
because we have rm, 1s „ rn, 1s if and only if m “ n. Note that this identification preserves
the operations ` and ¨ because

rm, 1s ` rn, 1s “ rm` n, 1s,

rm, 1s ¨ rn, 1s “ rmn, 1s.

Finally, observe that each nonzero rational number has a multiplicative inverse. Indeed, given
any ra, bs  r0, 1s we must have a ‰ 0 and hence the rational number rb, as is defined. Then
observe that

ra, bs ¨ rb, as “ r1, 1s

as desired. �

[Remark: This HW was a sketch of how the entire apparatus of number systems can be built from
the Peano axioms. This apparatus is called Peano Arithmetic (PA). Filling in all of the details
would take a very long time and some might feel that we already spent too long on this.

Most mathematicians believe that PA is “consistent”, i.e., that it will never lead to a contradiction.
A student asked me after class whether the consistency of PA can be proved. Gödel (1931) showed
that the consistency of PA can not be proved within PA. Gentzen (1936) showed that
the consistency of PA can be proved by passing to a much more complicated and less intuitive
system such as the Zermelo-Fraenkel axioms for set theory. Gödel’s result still leaves open the
possibility that PA is inconsistent, and occasionally a mathematician or a crank will claim to
have proved this. As far as I know all of the proofs have been wrong. It does not surprise me that
human intuition is difficult to formalize.]


