
Math 461 Exam 2
Spring 2023 Tues Apr 4

No electronic devices are allowed. There are 5 pages and each page is worth 6 points, for
a total of 30 points.

Problem 1. Complex Numbers.

(a) Express −1 in polar form.

1 · eiπ = cos(π) + i sin(π) = −1 + i0 = −1

Picture:

(b) Express 1 + i in polar form.

√
2 · eiπ/4 =

√
2 (cos(π/4) + i sin(π/4)) =

√
2

(
1√
2

+ i
1√
2

)
= 1 + i.
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(c) Let ω = eiθ for some real θ ∈ R. Use Euler’s formula to show that ω∗ = ω−1.

We have

ω∗ = (eiθ)∗

= (cos θ + i sin θ)∗ Euler’s formula

= cos θ − i sin θ

and

ω−1 = (eiθ)−1

= ei(−θ)

= cos(−θ) + i sin(−θ) Euler’s formula

= cos θ − i sin θ.
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Problem 2. Roots of Unity. Let ω = ei2π/6 so that

x6 − 1 = (x− 1)(x− ω)(x− ω2)(x− ω3)(x− ω4)(x− ω5).

(a) Complete the sentence: For integers k, ` ∈ Z we have ωk = ω` if and only if . . .

k − ` = 6n for some integer n ∈ Z.

(b) Find the complete factorization of x6−1 over the real numbers. [Hint: Use part (a)
and Problem 1(c) to group the non-real roots into complex conjugate pairs. Then
use the fact that α = eiθ implies αα∗ = 1 and α+ α∗ = 2 cos θ.]

It follows from part (a) and 1(d) that ω5 = ω−1 = ω∗, hence

= (x− ω)(x− ω∗)

= x2 − (ω + ω∗)x+ 1

= x2 − 2 cos(2π/6)x+ 1
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= x2 − x+ 1.

Similarly, we have ω4 = ω−2 = (ω2)∗ and hence

(x− ω2)(x− ω4) = (x− ω2)(x− (ω2)∗)

= x2 − (ω2 + (ω2)∗)x+ 1

= x2 − 2 cos(4π/6)x+ 1

= x2 + x+ 1.

Finally, since ω3 = eiπ = −1 we have

x6 − 1 = (x− 1)(x− ω)(x− ω2)(x− ω3)(x− ω4)(x− ω5)

= (x− 1)(x+ 1)(x− ω)(x− ω5)(x− ω2)(x− ω4)

= (x− 1)(x+ 1)(x2 − x+ 1)(x2 + x+ 1).

Problem 3. Roots of Other Complex Numbers.

(a) Find all of the third roots of 8i. [Hint: Express 8i in polar form.]

Note that eiπ/2 = cos(π/2) + i sin(π/2) = 0 + i = i. Hence

8i = 8 · eiπ/2.

We are looking for α = reiθ such that

α3 = 8i

(reiθ)3 = 8eiπ/2

r3ei3θ = 8eiπ/2.

Comparing lengths gives r3 = 8 and hence r = 2 because r is positive and real.
Then comparing angles gives

ei3θ = eiπ/2

3θ = π/2 + 2πk

θ = π/6 + (2π/3)k

for any integer k ∈ Z. This corresponds to three angles θ = π/6, 5π/6, 9π/6. Hence
the third roots of 8i are

2 · eiπ/6 = 2 (cos(π/6) + i sin(π/6)) =
√

3 + i,

2 · ei5π/6 = 2 (cos(5π/6) + i sin(5π/6)) = −
√

3 + i,

2 · ei9π/6 = 2 (cos(9π/6) + i sin(9π/6)) = −2i.

Picture:
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(b) Use part (a) to completely factor x3 − 8i over the complex numbers.

From part (a) and Descartes’ Theorem we have

x3 − 8i = (x− (−2i))
(
x− (

√
3 + i)

)(
x− (−

√
3 + i)

)
.

Alternatively, a few students observed that (2i)3 = −8i and then used the sum of
cubes formula:

x3 + y3 = (x+ y)(x2 − xy + y2)

x3 + (2i)3 = (x+ 2i)(x2 − (2i)x+ (2i)2)

x3 − 8i = (x+ 2i)(x2 − 2ix− 4).

Then we can factor x2 − 2ix− 4 using the quadratic formula:

x =
2i±

√
−4 + 16

2
= i±

√
3.

Problem 4. Abstract Conjugation. Let E ⊇ F be a field extension and let ∗ : E→ E
be any function with the following properties:

(1) α = α∗ if and only if α ∈ F,
(2) α∗∗ = α,
(3) (α+ β)∗ = α∗ + β∗,
(4) (αβ)∗ = α∗β∗.

(a) For any polynomial f(x) ∈ F[x] and constant α ∈ E use the above properties to
show that that [f(α)]∗ = f(α∗).

Consider a polynomial f(x) =
∑
akx

k with ak ∈ F for all k. Then

[f(α)]∗ =
(∑

akα
k
)∗
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=
∑(

akα
k
)∗

(3)

=
∑

a∗k(α
∗)k (4)

=
∑

ak(α
∗)k (1)

= f(α∗).

(b) For any polynomial f(x) ∈ F[x] and constant α ∈ E use part (a) to show that
f(α) = 0 if and only if f(α∗) = 0. [Hint: Property (2) implies that β = γ if and
only if β∗ = γ∗.]

Remark: Suppose that β, γ ∈ E satisfy β∗ = γ∗, so that β∗∗ = γ∗∗. Then (2)
implies β = γ. Also observe that property (1) implies 0∗ = 0. We will use these
facts in our proof.

Proof: Consider a polynomial f(x) ∈ F[x] and a constant α ∈ E. Then we have

f(α) = 0 ⇐⇒ [f(α)]∗ = 0∗ previous remark

⇐⇒ f(α∗) = 0. part (a) and (1)

Problem 5. Complex Roots of Real Polynomials. Let f(x) ∈ R[x] be a real
polynomial satisfying f(1 + i) = 0. Thus from Descartes’ Theorem we have

f(x) = (x− (1 + i))g(x) for some complex polynomial g(x) ∈ C[x].

(a) Show that g(1− i) = 0. [Hint: Use Problem 4(b).]

Since f(x) has real coefficients and f(1 + i) = 0, Problem 4(b) implies that

0 = f((1 + i)∗) = f(1− i).
But then

f(1− i) = ((1− i)− (1 + i))g(1− i)
0 = (−2i)g(1− i)
0 = g(1− i).

(b) Use part (a) to show that f(x) = (x2 − 2x + 2)h(x) for some real polynomial
h(x) ∈ R[x]. You may assume the following result without proof: If f(x) = p(x)h(x)
with f(x), p(x) ∈ R[x] and h(x) ∈ C[x], then we must have h(x) ∈ R[x].

Since g(1 − i) = 0, Descartes’ Theorem implies that g(x) = (x − (1 − i))h(x) for
some polynomial h(x) ∈ C[x]. Then we have

f(x) = (x− (1 + i))(x− (1− i))h(x)

= (x2 − 2x+ 2)h(x).

Finally, since f(x) and x2−2x+ 2 have real coefficients, we conclude that h(x) has
real coefficients.


