Math 461 Spring 2020
Homework 5 Drew Armstrong

Problem 1. Use the Rational Root Test to split the following polynomial:
f(x) = 82% 4 4% — 22 — 1 € Qz].

If f(a/b) = 0 for some a,b € Z with gcd(a,b) = 1, then the Rational Root Test tells us that
all and b8, so there are eight potential rational roots:
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By direct checking we find that +1/2 are roots. Thus by Descartes’ Theorem we have

fla) = (z = 1/2)(z +1/2)g(z) = (2 — 1/4)g(x)
for some g(z) € Q[z] of degree 1, and by long division we find that g(z) = 8z + 4:
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a?—3) 8a®+4a? — 221
— 823 + 2z

42 —1

— 4z2 +1

0

Finally, we conclude that
f(z)=(z—1/2)(x +1/2)(8x + 4)
=8(z — 1/2)(z + 1/2)*
=2z —1)(2z +1)2

Notice that the form of the solution is not unique.

[Remark: It turned out that —1/2 is actually a double root of f(z). We could see this more
quickly by observing that —1/2 is also a root of the derivative polynomial f’(z) = 2422 +8z—2.
In general, one can show that a root of f(z) has multiplicity greater than one if and only if it
also a root of the derivative f'(x).]

Problem 2. Symmetric Polynomials. Suppose that the polynomial z3 + 2% + 2z + 3
has the roots r,s,t (in some field). Find some integer coefficients a,b,c € Z such that the
polynomial 23 + az? + bz + ¢ has the roots rs, rt, st.

If the polynomial 2 + 22 4+ 2 + 3 has roots r, s,¢ (in some field), then Descartes says

24?420 +3=(x—7r)(x—s)(z—1)

=2 — (r+s+t)2° + (rs +rt + st)z — rst,

and comparing coefficients gives

-1 =r+s+t,
2 =rs+rt+st,
-3 =rst.



Now suppose that the polynomial 2% + ax? + bx + ¢ has roots rs,7t,st (in the same field).
Again, by Descartes’ Theorem we have

2?4 ax® +bx +c= (x —rs)(x —rt)(x — st)
=23 — (rs +rt + st)a? + [(rs)(rt) + (rs)(st) + (rt)(st)]z — (rs)(rt)(st),
=23 — (rs 4 rt + st)z® + rst(r 4+ s + t)z — (rst)?,
and then comparing coefficients gives

a =—(rs+rt+st)=-2,
b =rst(r+s+t)=3,
c =—(rst)? =-9.

We conclude that the polynomial 23 — 222 + 3z — 9 has roots rs,rt, st, and we found this
without even knowing the values of 7, s,¢. It doesn’t even matter where these roots live, only
that they exist in some field somewhere.

[Remark: This problem is based on Laplace’s Proof of the Fundamental Theorem of Algebra. If
the real polynomial f(z) € R[z] has roots ; (1 < i < n), recall that for each real number A € R
we defined the auxiliary polynomial gy (x) with roots B;;x = o + oj + Ao (1 <@ < j < n).
By using the same method as above, we could express each coefficient of gy () as a symmetric
function of the roots f3;;x, which is necessarily also a symmetric function of the roots a; of
f(x), hence is some real function of the coefficients of f(z), hence is a real number. Thus it
follows that gy(z) has real coefficients.

If T wanted to make the problem slightly more relevant (and much harder) I would have
asked you to find the coefficients of the polynomial with roots r+ s+ Ars, r+t+ Art, s+t + Ast.
P.S. The answer is 23 — (2A — 2)2% + (302 — 11X + 3)x — (9A3 — 12A2 + 7TA + 1).]

2mi/n

Problem 3. Some Specific Cyclotomic Polynomials. Let w = e and recall the

definition of the nth cyclotomic polynomial:

D, (x) = H (x — wk).
1<k<n
ged(k,n)=1

(a) If p is prime, show that ®,(z) =1+ 2 + 2>+ -+ +2P~L. [Hint: In this case we have
ged(k,p) = 1 for all 1 < k < p and hence ®,(z) = (v — w)(z — w?) -+ (x — wP™1) for
w = €2™/P. On the other hand, we know that 2”7 — 1= (z — 1)(z —w) - - (z — wP™1) ]
(b) If n = 2™ for some m > 1, show that ®,(z) = 1 + 2™/2. [Hint: Show that the roots
of ®,(z) are precisely the (n/2)th roots of —1. First, observe that ged(k,n) = 1 if

and only if k is odd, hence the roots of @, (z) are (e2™/™)°dd  Second, observe that
a2 = 1 = eilm+2rk) implies o = etm+2mk)/(n/2) — (627ri/n)1+2k for all k € Z]

(a): Let p be prime and let w = €2™"/?. Then since ged(k,p) = 1 for all 1 < k < p we have
Dp(@) = (2 — ) (@ —?) -+ (@ — ).

On the other hand, we know the following two factorizations of P — 1:
P —1=@-)1+z+2®+ -+
-l=@-1)(z-w) - (z—wl ).

By comparing these three formulas we obtain

() =14a+a®+ - ol



(b): Let n = 2™ be a power of 2 with m > 1 and let w = €2>7/". Then I claim that
®,(x) = 1+ x™/2. To see this, we first note that ged(k,n) = 1 if and only if k is odd. Hence
P,(z) = (z —w)(z — )z —w®) - (z —w" ).

On the other hand, we will compute the (n/2)th (i.e., 2"~'th) roots of —1. To do this we

note that —1 can be expressed in polar form as €™, more generally as e!(™*27%) for any k € Z.
If @ is an (n/2)th root of —1 then we must have

a? = —1
o2 — gilmt2mk)
a = eilm+2mk)/(n/2)
— 2mi(142k)/n
— (/12
— lH2k
for some integer k € Z. It follows that (n/2)th roots of —1 are w!, w3 w5, - ,w" !, and hence

"% 41 =2~ (—1)
=(z-w(z-—w)(z-w’)  (z-w

= o, (z).

n—l)

[Remark: In both of these cases we found that ®,(z) has integer coefficients. In Problem 5
below we will prove that this always happens.]

Problem 4. Uniqueness of Quotient and Remainder. Let F be a field and consider
polynomials f(x),g(z) € Flz] with g(z) # 0(z).
(a) Suppose that we have ¢1(x),r1(x), g2(x), ro(x) € Flz] satisfying
{ f(@) = q(@)g(x) + ri(x), { f(z) = @(x)g(x) + ra(2),
deg(r1) < deg(g), deg(r2) < deg(g).
In this case, prove that ¢1(z) = g¢2(x) and ri(z) = ro(x). [Hint: First note that
(g1 — q2)g = (ro — r1). If 1 # g2 then this implies that deg(re — 1) > deg(g). On the
other hand, we have deg(r2 — r1) < max{deg(r1),deg(r2)}.]
(b) Now let R C F be a subring. Suppose that we have f(z),g(z) € R[x] where g(z)
has leading coefficient 1, and suppose that f(x) = g(z)q(x) for some g(x) € Flx].
In this case, use part (a) to show that we must actually have ¢(z) € R[z]. [Hint:
Since g(z) € R[z] has leading coefficient 1, we may apply long division to obtain
f(z) = g(z)¢d'(z) + 7' (x) for some ¢(z),r'(z) € R[z] with deg(r’) < deg(g’). On the
other hand, we have assumed that f(z) = g(z)g(x) + 0 for some ¢(x) € F[z]. Apply
(a) to show that ¢(z) = ¢’(x), and hence ¢(z) € R]x].]

(a): Suppose that we have q1(z),7r1(x), g2(z), r2(x) € F[z] satisfying

{ f(z) = qi(z)g(z) + (), { f(z) = q2(x)g(x) + r2(2),
deg(r1) < deg(g), deg(rz) < deg(g)-
By equating the two formulas for f(x) this implies that

a1 (z)g(z) + ri(z) = g2(2)g(@) + ra2(x)

(1 () = q2(@)]g(x) = [r2(z) — r1(2)].



Now assume for contradiction that q;(z) # ¢2(x), and hence q1(z) — g2(x) # 0(x). Since
we also have g(z) # 0(z), it follows from the above formula that

deg(ry — 1) = deg((q1 — ¢2)9) = deg(q1 — ¢2) + deg(g) = deg(g).
On the other hand, since deg(r1) < deg(g) and deg(r2) < deg(g) we must have
deg(re — r1) < max{deg(r1), deg(r2)} < deg(g).

This contradiction shows that ¢;(x) = ¢g2(x). Finally, we conclude that

[ra(z) —r1(2)] = [q1(2) — @2(2)]g(x) = 0(x)g(x) = O(x),

and hence r1(z) = ra(x). O

(b): Let R C F be a subring of a field and suppose that we have f(x) = g(x)q(z) for some
f(z),9(x) € R[z] and g(z) € Flx], where g(x) has leading coefficient 1E| In this case I claim
that we must have ¢(x) € Rx].

To see this, we first apply long division to divide f(z) by g(x). Since f(x),g(x) € R[z] and
since the leading coefficient of g(x) is 1 we are guaranteed that the quotient and remainder
are also in the ring R[z]. In other words, there exist some ¢'(z),r'(z) € R[z] satisfying
f(z) = g(z)d'(z) + r'(z) and deg(r’) < deg(g). On the other hand, we also have f(z) =
g(x)q(x) + 0(z) and deg(0) < deg(g). But now it follows from part (a) that q(z) = ¢'(x),
hence ¢(z) has coefficients in R. O

Problem 5. Cyclotomic Polynomials Have Integer Coefficients. We will prove in
class that cyclotomic polynomials satisfy the following identity:

" —1= H Dy(x).
1<d<n
dln
Use this identity and Problem 4(b) to prove by induction that ®,(x) € Z[z] for all n > 1.
[Hint: Suppose that we have 2™ — 1 = &,,(z)g(x) for some polynomial ¢(x) € Z[z]. Then since
®,,(x) € Clz] has leading coefficient 1, we can apply Problem 4(b) with R =7 and F = C]

We will prove by induction that @, (z) € Z[z] for all n > 1. The base case is ®;(z) =z —1 €
Zlz]. Now fix some n > 2 and assume for induction that we have ®y(z) € Z[z] for all
1 <k < n. In this case we will show that @, (x).

To see this we isolate the factor @, (x) from the right hand side of the given identity:

2" —1=®,(x) H D4(x).
1<d<n
din
Define the polynomials f(z) = 2" —1, ¢(x) = ®,(x) and g(x) = [[; ®4(x), where this product
runs over all d|n such that 1 < d < n. By induction, each factor in this product has integer
coefficients, hence g(x) has integer coefficients. (Furthermore, since cyclotomic polynomials
have leading coefficient 1 by definition, the product g(z) also has leading coefficient 1.) In
summary, we have f(x) = g(z)q(z) where f(x),g(x) € Z[z] and ¢(z) € C[z], and where g(x)
has leading coefficient 1. Thus it follows from Problem 4(b) that ¢(z) € Z[z] as desired. O

IMore generally, we can allow the leading coefficient of g(z) be any invertible element of the ring R.



Problem 6. A Property of Quadratic Field Extensions. The construction of C from
R can be generalized as follows. Let [E D IF be fields and let ¢« € E be some element satisfying
t € F and 12 € F. Then I claim that the following set is a subfield of E:

F(.) :={a+b.:a,beF}.

Furthermore, the conjugation operator (a + bt)* = (a — bt) behaves exactly like complex
conjugation. Jargon: We say that F(¢) O F is a quadratic field extension. The following
Lemma will be useful in our discussion of impossible constructions:

Consider a polynomial f(x) € Flx] of degree 3. If f(x) has some root o € F(1)
in a quadratic field extension then I claim that f(x) also has a root in F.

Prove the Lemma. [Hint: Let o € F(¢) be aroot of f(x). If « € F then we are done. Otherwise,
the conjugate a* € [F(v) is another root of f(z), hence by Descartes’ Factor Theorem we have
f(z) = (z —a)(x — a)g(x) for some g(x) € F(i)[z] of degree 1.

Use Problem 4(b) to show that g(z) € F[z], hence g(z) has a root in F.]

Proof. Let F(:) O F be a quadratic field extension and let f(z) € F[z] have degree 3. Then

f(x) has a root N f(x) has a root
in the field F(:) in the field F '

To prove this, suppose that f(a) = 0 for some o € F(¢). If o € F then we are done, so let us
suppose that a € F, and hence a* # a. Since the coefficients of f are in F we have

flae)=0 = [f(@]"=0 = [f(a")=0 = [f(a")=0,
and hence o* is another root of f(z). By applying Descartes’ Factor Theorem twice we obtain

f(x) = (z = a)(z — a’)q(z)
for some polynomial ¢(x) € F(¢)[z] of degree 1. But I claim that g(x) actually has coefficients
in F. To see this, we define g(z) = (x — a)(x — ™) and note that

g(z) =2 — (a+ o)z + aa”
has coefficients in F because (o + a*)* = a + o* and (aa™)* = aa®. Thus we have f(z) =
g(x)q(z) with f(z),g(x) € F[z] and ¢(x) € F(¢)[z], where g(z) has leading coefficient 1} It
follows from Problem 4(b) that ¢(z) € F[z]| and since deg(q) = 1 this implies that ¢(x) = az+b
for some a,b € F with a # 0. Finally, we observe that

f(=b/a) = g(=b/q)q(=b/a) = g(=b/a)0 = O,
hence f(x) has the root —b/a € F as desired. O

[Remark: Why do we care? In class we will use this lemma to prove that a polynomial
f(z) € Q[z] of degree 3 with no rational roots, also has no constructible rootsE| It will follow
that the numbers /2, cos(27/9), and cos(27/7) are not constructible, hence the classical
problems of doubling the cube, trisecting the angle, and constructing the regular heptagon
are impossible.]

2Actually, the leading coefficient of g doesn’t matter this time because F is a field.
3Recall that a “constructible number” is a coordinate of a point that can be constructed from the points
(0,0) and (1,0) using straightedge and compass.



