
Math 461 Spring 2020
Homework 5 Drew Armstrong

Problem 1. Use the Rational Root Test to split the following polynomial:

f(x) = 8x3 + 4x2 − 2x− 1 ∈ Q[x].

If f(a/b) = 0 for some a, b ∈ Z with gcd(a, b) = 1, then the Rational Root Test tells us that
a|1 and b|8, so there are eight potential rational roots:

a

b
∈
{
±1,±1

2
,±1

4
,±1

8

}
.

By direct checking we find that ±1/2 are roots. Thus by Descartes’ Theorem we have

f(x) = (x− 1/2)(x+ 1/2)g(x) = (x2 − 1/4)g(x)

for some g(x) ∈ Q[x] of degree 1, and by long division we find that g(x) = 8x+ 4:

8x+ 4

x2 − 1
4

)
8x3 + 4x2 − 2x− 1
− 8x3 + 2x

4x2 − 1
− 4x2 + 1

0

Finally, we conclude that

f(x) = (x− 1/2)(x+ 1/2)(8x+ 4)

= 8(x− 1/2)(x+ 1/2)2

= (2x− 1)(2x+ 1)2.

Notice that the form of the solution is not unique.

[Remark: It turned out that −1/2 is actually a double root of f(x). We could see this more
quickly by observing that −1/2 is also a root of the derivative polynomial f ′(x) = 24x2+8x−2.
In general, one can show that a root of f(x) has multiplicity greater than one if and only if it
also a root of the derivative f ′(x).]

Problem 2. Symmetric Polynomials. Suppose that the polynomial x3 + x2 + 2x + 3
has the roots r, s, t (in some field). Find some integer coefficients a, b, c ∈ Z such that the
polynomial x3 + ax2 + bx+ c has the roots rs, rt, st.

If the polynomial x3 + x2 + 2x+ 3 has roots r, s, t (in some field), then Descartes says

x3 + x2 + 2x+ 3 = (x− r)(x− s)(x− t)
= x3 − (r + s+ t)x2 + (rs+ rt+ st)x− rst,

and comparing coefficients gives  −1 = r + s+ t,
2 = rs+ rt+ st,
−3 = rst.



Now suppose that the polynomial x3 + ax2 + bx + c has roots rs, rt, st (in the same field).
Again, by Descartes’ Theorem we have

x3 + ax2 + bx+ c = (x− rs)(x− rt)(x− st)
= x3 − (rs+ rt+ st)x2 + [(rs)(rt) + (rs)(st) + (rt)(st)]x− (rs)(rt)(st),

= x3 − (rs+ rt+ st)x2 + rst(r + s+ t)x− (rst)2,

and then comparing coefficients gives a = −(rs+ rt+ st) = −2,
b = rst(r + s+ t) = 3,
c = −(rst)2 = −9.

We conclude that the polynomial x3 − 2x2 + 3x − 9 has roots rs, rt, st, and we found this
without even knowing the values of r, s, t. It doesn’t even matter where these roots live, only
that they exist in some field somewhere.

[Remark: This problem is based on Laplace’s Proof of the Fundamental Theorem of Algebra. If
the real polynomial f(x) ∈ R[x] has roots αi (1 ≤ i ≤ n), recall that for each real number λ ∈ R
we defined the auxiliary polynomial gλ(x) with roots βijλ = αi + αj + λαiαj (1 ≤ i < j ≤ n).
By using the same method as above, we could express each coefficient of gλ(x) as a symmetric
function of the roots βijλ, which is necessarily also a symmetric function of the roots αi of
f(x), hence is some real function of the coefficients of f(x), hence is a real number. Thus it
follows that gλ(x) has real coefficients.

If I wanted to make the problem slightly more relevant (and much harder) I would have
asked you to find the coefficients of the polynomial with roots r+s+λrs, r+t+λrt, s+t+λst.
P.S. The answer is x3 − (2λ− 2)x2 + (3λ2 − 11λ+ 3)x− (9λ3 − 12λ2 + 7λ+ 1).]

Problem 3. Some Specific Cyclotomic Polynomials. Let ω = e2πi/n and recall the
definition of the nth cyclotomic polynomial:

Φn(x) =
∏

1≤k≤n
gcd(k,n)=1

(x− ωk).

(a) If p is prime, show that Φp(x) = 1 + x + x2 + · · · + xp−1. [Hint: In this case we have
gcd(k, p) = 1 for all 1 ≤ k < p and hence Φp(x) = (x − ω)(x − ω2) · · · (x − ωp−1) for

ω = e2πi/p. On the other hand, we know that xp − 1 = (x− 1)(x− ω) · · · (x− ωp−1).]
(b) If n = 2m for some m ≥ 1, show that Φn(x) = 1 + xn/2. [Hint: Show that the roots

of Φn(x) are precisely the (n/2)th roots of −1. First, observe that gcd(k, n) = 1 if

and only if k is odd, hence the roots of Φn(x) are (e2πi/n)odd. Second, observe that

αn/2 = −1 = ei(π+2πk) implies α = ei(π+2πk)/(n/2) = (e2πi/n)1+2k for all k ∈ Z.]

(a): Let p be prime and let ω = e2πi/p. Then since gcd(k, p) = 1 for all 1 ≤ k < p we have

Φp(x) = (x− ω1)(x− ω2) · · · (x− ωp−1).
On the other hand, we know the following two factorizations of xp − 1:

xp − 1 = (x− 1)(1 + x+ x2 + · · ·+ xp−1)

xp − 1 = (x− 1)(x− ω) · · · (x− ωp−1).
By comparing these three formulas we obtain

Φp(x) = 1 + x+ x2 + · · ·+ xp−1.



(b): Let n = 2m be a power of 2 with m ≥ 1 and let ω = e2πi/n. Then I claim that

Φn(x) = 1 + xn/2. To see this, we first note that gcd(k, n) = 1 if and only if k is odd. Hence

Φn(x) = (x− ω)(x− ω3)(x− ω5) · · · (x− ωn−1).
On the other hand, we will compute the (n/2)th (i.e., 2m−1th) roots of −1. To do this we

note that −1 can be expressed in polar form as eiπ, more generally as ei(π+2πk) for any k ∈ Z.
If α is an (n/2)th root of −1 then we must have

αn/2 = −1

αn/2 = ei(π+2πk)

α = ei(π+2πk)/(n/2)

= e2πi(1+2k)/n

= (e2πi/n)1+2k

= ω1+2k

for some integer k ∈ Z. It follows that (n/2)th roots of −1 are ω1, ω3, ω5, · · · , ωn−1, and hence

xn/2 + 1 = xn/2 − (−1)

= (x− ω)(x− ω3)(x− ω5) · · · (x− ωn−1)
= Φn(x).

[Remark: In both of these cases we found that Φn(x) has integer coefficients. In Problem 5
below we will prove that this always happens.]

Problem 4. Uniqueness of Quotient and Remainder. Let F be a field and consider
polynomials f(x), g(x) ∈ F[x] with g(x) 6= 0(x).

(a) Suppose that we have q1(x), r1(x), q2(x), r2(x) ∈ F[x] satisfying{
f(x) = q1(x)g(x) + r1(x),
deg(r1) < deg(g),

{
f(x) = q2(x)g(x) + r2(x),
deg(r2) < deg(g).

In this case, prove that q1(x) = q2(x) and r1(x) = r2(x). [Hint: First note that
(q1 − q2)g = (r2 − r1). If q1 6= q2 then this implies that deg(r2 − r1) ≥ deg(g). On the
other hand, we have deg(r2 − r1) ≤ max{deg(r1), deg(r2)}.]

(b) Now let R ⊆ F be a subring. Suppose that we have f(x), g(x) ∈ R[x] where g(x)
has leading coefficient 1, and suppose that f(x) = g(x)q(x) for some q(x) ∈ F[x].
In this case, use part (a) to show that we must actually have q(x) ∈ R[x]. [Hint:
Since g(x) ∈ R[x] has leading coefficient 1, we may apply long division to obtain
f(x) = g(x)q′(x) + r′(x) for some q′(x), r′(x) ∈ R[x] with deg(r′) < deg(g′). On the
other hand, we have assumed that f(x) = g(x)q(x) + 0 for some q(x) ∈ F[x]. Apply
(a) to show that q(x) = q′(x), and hence q(x) ∈ R[x].]

(a): Suppose that we have q1(x), r1(x), q2(x), r2(x) ∈ F[x] satisfying{
f(x) = q1(x)g(x) + r1(x),
deg(r1) < deg(g),

{
f(x) = q2(x)g(x) + r2(x),
deg(r2) < deg(g).

By equating the two formulas for f(x) this implies that

q1(x)g(x) + r1(x) = q2(x)g(x) + r2(x)

[q1(x)− q2(x)]g(x) = [r2(x)− r1(x)].



Now assume for contradiction that q1(x) 6= q2(x), and hence q1(x) − q2(x) 6= 0(x). Since
we also have g(x) 6= 0(x), it follows from the above formula that

deg(r2 − r1) = deg((q1 − q2)g) = deg(q1 − q2) + deg(g) ≥ deg(g).

On the other hand, since deg(r1) < deg(g) and deg(r2) < deg(g) we must have

deg(r2 − r1) ≤ max{deg(r1), deg(r2)} < deg(g).

This contradiction shows that q1(x) = q2(x). Finally, we conclude that

[r2(x)− r1(x)] = [q1(x)− q2(x)]g(x) = 0(x)g(x) = 0(x),

and hence r1(x) = r2(x). �

(b): Let R ⊆ F be a subring of a field and suppose that we have f(x) = g(x)q(x) for some
f(x), g(x) ∈ R[x] and q(x) ∈ F[x], where g(x) has leading coefficient 1.1 In this case I claim
that we must have q(x) ∈ R[x].

To see this, we first apply long division to divide f(x) by g(x). Since f(x), g(x) ∈ R[x] and
since the leading coefficient of g(x) is 1 we are guaranteed that the quotient and remainder
are also in the ring R[x]. In other words, there exist some q′(x), r′(x) ∈ R[x] satisfying
f(x) = g(x)q′(x) + r′(x) and deg(r′) < deg(g). On the other hand, we also have f(x) =
g(x)q(x) + 0(x) and deg(0) < deg(g). But now it follows from part (a) that q(x) = q′(x),
hence q(x) has coefficients in R. �

Problem 5. Cyclotomic Polynomials Have Integer Coefficients. We will prove in
class that cyclotomic polynomials satisfy the following identity:

xn − 1 =
∏

1≤d≤n
d|n

Φd(x).

Use this identity and Problem 4(b) to prove by induction that Φn(x) ∈ Z[x] for all n ≥ 1.
[Hint: Suppose that we have xn−1 = Φn(x)q(x) for some polynomial q(x) ∈ Z[x]. Then since
Φn(x) ∈ C[x] has leading coefficient 1, we can apply Problem 4(b) with R = Z and F = C.]

We will prove by induction that Φn(x) ∈ Z[x] for all n ≥ 1. The base case is Φ1(x) = x− 1 ∈
Z[x]. Now fix some n ≥ 2 and assume for induction that we have Φk(x) ∈ Z[x] for all
1 ≤ k < n. In this case we will show that Φn(x).

To see this we isolate the factor Φn(x) from the right hand side of the given identity:

xn − 1 = Φn(x)
∏

1≤d<n
d|n

Φd(x).

Define the polynomials f(x) = xn−1, q(x) = Φn(x) and g(x) =
∏
d Φd(x), where this product

runs over all d|n such that 1 ≤ d < n. By induction, each factor in this product has integer
coefficients, hence g(x) has integer coefficients. (Furthermore, since cyclotomic polynomials
have leading coefficient 1 by definition, the product g(x) also has leading coefficient 1.) In
summary, we have f(x) = g(x)q(x) where f(x), g(x) ∈ Z[x] and q(x) ∈ C[x], and where g(x)
has leading coefficient 1. Thus it follows from Problem 4(b) that q(x) ∈ Z[x] as desired. �

1More generally, we can allow the leading coefficient of g(x) be any invertible element of the ring R.



Problem 6. A Property of Quadratic Field Extensions. The construction of C from
R can be generalized as follows. Let E ⊇ F be fields and let ι ∈ E be some element satisfying
ι 6∈ F and ι2 ∈ F. Then I claim that the following set is a subfield of E:

F(ι) := {a+ bι : a, b ∈ F}.
Furthermore, the conjugation operator (a + bι)∗ = (a − bι) behaves exactly like complex
conjugation. Jargon: We say that F(ι) ⊇ F is a quadratic field extension. The following
Lemma will be useful in our discussion of impossible constructions:

Consider a polynomial f(x) ∈ F[x] of degree 3. If f(x) has some root α ∈ F(ι)
in a quadratic field extension then I claim that f(x) also has a root in F.

Prove the Lemma. [Hint: Let α ∈ F(ι) be a root of f(x). If α ∈ F then we are done. Otherwise,
the conjugate α∗ ∈ F(ι) is another root of f(x), hence by Descartes’ Factor Theorem we have

f(x) = (x− α)(x− α∗)g(x) for some g(x) ∈ F(ι)[x] of degree 1.

Use Problem 4(b) to show that g(x) ∈ F[x], hence g(x) has a root in F.]

Proof. Let F(ι) ⊇ F be a quadratic field extension and let f(x) ∈ F[x] have degree 3. Then(
f(x) has a root
in the field F(ι)

)
⇒

(
f(x) has a root
in the field F

)
.

To prove this, suppose that f(α) = 0 for some α ∈ F(ι). If α ∈ F then we are done, so let us
suppose that α 6∈ F, and hence α∗ 6= α. Since the coefficients of f are in F we have

f(α) = 0 ⇒ [f(α)]∗ = 0 ⇒ f∗(α∗) = 0 ⇒ f(α∗) = 0,

and hence α∗ is another root of f(x). By applying Descartes’ Factor Theorem twice we obtain

f(x) = (x− α)(x− α∗)q(x)

for some polynomial q(x) ∈ F(ι)[x] of degree 1. But I claim that q(x) actually has coefficients
in F. To see this, we define g(x) = (x− α)(x− α∗) and note that

g(x) = x2 − (α+ α∗)x+ αα∗

has coefficients in F because (α + α∗)∗ = α + α∗ and (αα∗)∗ = αα∗. Thus we have f(x) =
g(x)q(x) with f(x), g(x) ∈ F[x] and q(x) ∈ F(ι)[x], where g(x) has leading coefficient 1.2 It
follows from Problem 4(b) that q(x) ∈ F[x] and since deg(q) = 1 this implies that q(x) = ax+b
for some a, b ∈ F with a 6= 0. Finally, we observe that

f(−b/a) = g(−b/q)q(−b/a) = g(−b/a)0 = 0,

hence f(x) has the root −b/a ∈ F as desired. �

[Remark: Why do we care? In class we will use this lemma to prove that a polynomial
f(x) ∈ Q[x] of degree 3 with no rational roots, also has no constructible roots.3 It will follow
that the numbers 3

√
2, cos(2π/9), and cos(2π/7) are not constructible, hence the classical

problems of doubling the cube, trisecting the angle, and constructing the regular heptagon
are impossible.]

2Actually, the leading coefficient of g doesn’t matter this time because F is a field.
3Recall that a “constructible number” is a coordinate of a point that can be constructed from the points

(0, 0) and (1, 0) using straightedge and compass.


