Problem 1. Use the Rational Root Test to split the following polynomial:

$$
f(x)=8 x^{3}+4 x^{2}-2 x-1 \in \mathbb{Q}[x] .
$$

Problem 2. Symmetric Polynomials. Suppose that the polynomial $x^{3}+x^{2}+2 x+3$ has the roots r, s, t in some field. Find some integer coefficients $a, b, c \in \mathbb{Z}$ such that the polynomial $x^{3}+a x^{2}+b x+c$ has the roots $r s, r t, s t$.

Problem 3. Some Specific Cyclotomic Polynomials. Recall the definition of the nth cyclotomic polynomial:

$$
\Phi_{n}(x)=\prod_{\substack{1 \leq k \leq n \\ \operatorname{gcd}(k, n)=1}}\left(x-e^{2 \pi i k / n}\right)
$$

(a) If p is prime, show that $\Phi_{p}(x)=1+x+x^{2}+\cdots+x^{p-1}$. [Hint: In this case we have $\operatorname{gcd}(k, p)=1$ for all $1 \leq k<p$ and hence $\Phi_{p}(x)=(x-\omega)\left(x-\omega^{2}\right) \cdots\left(x-\omega^{p-1}\right)$ for $\omega=e^{2 \pi i / p}$. On the other hand, we know that $x^{p}-1=(x-1)(x-\omega) \cdots\left(x-\omega^{p-1}\right)$.]
(b) If $n=2^{m}$ for some $m \geq 1$, show that $\Phi_{n}(x)=1+x^{n / 2}$. [Hint: Show that the roots of $\Phi_{n}(x)$ are precisely the $(n / 2)$ th roots of -1 . First, observe that $\operatorname{gcd}(k, n)=1$ if and only if k is odd, hence the roots of $\Phi_{n}(x)$ are $\left(e^{2 \pi i / n}\right)^{\text {odd }}$. Second, observe that $\alpha^{n / 2}=-1=e^{i(\pi+2 \pi k)}$ implies $\alpha=e^{i(\pi+2 \pi k) /(n / 2)}=\left(e^{2 \pi i / n}\right)^{1+2 k}$ for all $k \in \mathbb{Z}$.]

Problem 4. Uniqueness of Quotient and Remainder. Let \mathbb{F} be a field and consider polynomials $f(x), g(x) \in \mathbb{F}[x]$ with $g(x) \neq 0(x)$.
(a) Suppose that we have $q_{1}(x), r_{1}(x), q_{2}(x), r_{2}(x) \in \mathbb{F}[x]$ satisfying

$$
\left\{\begin{array} { l }
{ f (x) = q _ { 1 } (x) g (x) + r _ { 1 } (x) , } \\
{ \operatorname { d e g } (r _ { 1 }) < \operatorname { d e g } (g) , }
\end{array} \quad \left\{\begin{array}{l}
f(x)=q_{2}(x) g(x)+r_{2}(x), \\
\operatorname{deg}\left(r_{2}\right)<\operatorname{deg}(g) .
\end{array}\right.\right.
$$

In this case, prove that $q_{1}(x)=q_{2}(x)$ and $r_{1}(x)=r_{2}(x)$. [Hint: First note that $\left(q_{1}-q_{2}\right) g=\left(r_{2}-r_{1}\right)$. If $q_{1} \neq q_{2}$ then this implies that $\operatorname{deg}\left(r_{2}-r_{1}\right) \geq \operatorname{deg}(g)$. On the other hand, we have $\operatorname{deg}\left(r_{2}-r_{1}\right) \leq \max \left\{\operatorname{deg}\left(r_{1}\right), \operatorname{deg}\left(r_{2}\right)\right\}$.]
(b) Now let $R \subseteq \mathbb{F}$ be a subring. Suppose that we have $f(x), g(x) \in R[x]$ where $g(x)$ has leading coefficient 1 , and suppose that $f(x)=g(x) q(x)$ for some $q(x) \in \mathbb{F}[x]$. In this case, use part (a) to show that we must actually have $q(x) \in R[x]$. [Hint: Since $g(x) \in R[x]$ has leading coefficient 1 , we may apply long division to obtain $f(x)=g(x) q^{\prime}(x)+r^{\prime}(x)$ for some $q^{\prime}(x), r^{\prime}(x) \in R[x]$ with $\operatorname{deg}\left(r^{\prime}\right)<\operatorname{deg}\left(g^{\prime}\right)$. On the other hand, we have assumed that $f(x)=g(x) q(x)+0$ for some $q(x) \in \mathbb{F}[x]$. Apply (a) to show that $q(x)=q^{\prime}(x)$, and hence $q(x) \in R[x]$.]

Problem 5. Cyclotomic Polynomials Have Integer Coefficients. We will prove in class that cyclotomic polynomials satisfy the following identity:

$$
x^{n}-1=\prod_{\substack{1 \leq d \leq n \\ d \mid n}} \Phi_{d}(x)
$$

Use this identity and Problem 4(b) to prove by induction that $\Phi_{n}(x) \in \mathbb{Z}[x]$ for all $n \geq 1$. [Hint: Suppose that we have $x^{n}-1=\Phi_{n}(x) q(x)$ for some polynomial $q(x) \in \mathbb{Z}[x]$. Then since $\Phi_{n}(x) \in \mathbb{C}[x]$ has leading coefficient 1 , we can apply Problem $4(\mathrm{~b})$ with $R=\mathbb{Z}$ and $\mathbb{F}=\mathbb{C}$.]

Problem 6. A Property of Quadratic Field Extensions. The construction of \mathbb{C} from \mathbb{R} can be generalized as follows. Let $\mathbb{E} \supseteq \mathbb{F}$ be fields and let $\iota \in \mathbb{E}$ be some element satisfying $\iota \notin \mathbb{F}$ and $\iota^{2} \in \mathbb{F}$. Then I claim that the following set is a subfield of \mathbb{E} :

$$
\mathbb{F}(\iota):=\{a+b \iota: a, b \in \mathbb{F}\} .
$$

Furthermore, the conjugation operator $(a+b \iota)^{*}=(a-b \iota)$ behaves exactly like complex conjugation. Jargon: We say that $\mathbb{F}(\iota) \supseteq \mathbb{F}$ is a quadratic field extension. The following Lemma will be useful in our discussion of impossible constructions:

Consider a polynomial $f(x) \in \mathbb{F}[x]$ of degree 3 . If $f(x)$ has some root $\alpha \in \mathbb{F}(\iota)$ in a quadratic field extension then I claim that $f(x)$ also has a root in \mathbb{F}.

Prove the Lemma. [Hint: Let $\alpha \in \mathbb{F}(\iota)$ be a root of $f(x)$. If $\alpha \in \mathbb{F}$ then we are done. Otherwise, the conjugate $\alpha^{*} \in \mathbb{F}(\iota)$ is another root of $f(x)$, hence by Descartes' Factor Theorem we have

$$
f(x)=(x-\alpha)\left(x-\alpha^{*}\right) g(x) \quad \text { for some } g(x) \in \mathbb{F}(\iota)[x] \text { of degree } 1 .
$$

Use Problem 4(b) to show that $g(x) \in \mathbb{F}[x]$, hence $g(x)$ has a root in \mathbb{F}.]

