Math 461 Spring 2020
Homework 5 Drew Armstrong

Problem 1. Use the Rational Root Test to split the following polynomial:
f(x) = 823 4 42% — 22 — 1 € Q[z].

Problem 2. Symmetric Polynomials. Suppose that the polynomial 23 + 22 + 2z + 3 has
the roots r, s, t in some field. Find some integer coefficients a, b, ¢ € Z such that the polynomial
23 + ax? + bz + ¢ has the roots s, rt, st.

Problem 3. Some Specific Cyclotomic Polynomials. Recall the definition of the nth
cyclotomic polynomial:
ou(x)= [ (@—e*m).
1<k<n
ged(k,n)=1
(a) If p is prime, show that ®,(z) =1+ 2 + 2% +--- + 2P~L. [Hint: In this case we have
ged(k,p) =1 for all 1 < k < p and hence ®,(z) = (z — w)(z — w?) -+ (x — wP™1) for
w = e*™/P_ On the other hand, we know that 2? — 1 = (z — 1)(z — w)--- (x — wP~ )]
(b) If n = 2™ for some m > 1, show that ®,(z) = 1+ 2™/2. [Hint: Show that the roots
of @, (x) are precisely the (n/2)th roots of —1. First, observe that ged(k,n) = 1 if
and only if k is odd, hence the roots of ®,, () are (e2™/™)°dd  Second, observe that
a™? = —1 = eilm+2nk) implies o = etmt2nk)/(n/2) — (627ri/n)1+2k for all k € Z]

Problem 4. Uniqueness of Quotient and Remainder. Let F be a field and consider
polynomials f(x),g(z) € Flz] with g(z) # 0(z).
(a) Suppose that we have q;(z),r1(x), g2(x), ro(z) € Flx] satisfying
x

]
{ f(x) = q1(2)g(x) + ri(x), { f(x) = qa(z)g(w) + ra(2),
deg(r1) < deg(g), deg(r2) < deg(g).

In this case, prove that ¢i(x) = g2(z) and ri(x) = ro(x). [Hint: First note that
(g1 — q2)g = (ro — r1). If 1 # g2 then this implies that deg(re — 1) > deg(g). On the
other hand, we have deg(ro — r1) < max{deg(r1),deg(r2)}.]

(b) Now let R C F be a subring. Suppose that we have f(z),g(z) € R[x] where g(z)
has leading coefficient 1, and suppose that f(x) = g(z)q(x) for some g(x) € Flx].
In this case, use part (a) to show that we must actually have ¢(x) € R[z|. [Hint:
Since g(z) € R[z] has leading coefficient 1, we may apply long division to obtain
f(x) = g(z)¢d'(z) + ' (x) for some ¢(z),r'(z) € R[z] with deg(r’) < deg(g’). On the
other hand, we have assumed that f(x) = g(z)q(z) + 0 for some g(x) € F[x]. Apply
(a) to show that ¢(z) = ¢’(x), and hence ¢q(z) € Rx].]

Problem 5. Cyclotomic Polynomials Have Integer Coefficients. We will prove in
class that cyclotomic polynomials satisfy the following identity:

" —1= H Dy(x).
1<d<n
dln
Use this identity and Problem 4(b) to prove by induction that ®,(z) € Z[z] for all n > 1.
[Hint: Suppose that we have 2™ —1 = ®,,(x)g(x) for some polynomial ¢(x) € Z[z]. Then since
®,,(x) € Clz] has leading coefficient 1, we can apply Problem 4(b) with R =7 and F = C]



Problem 6. A Property of Quadratic Field Extensions. The construction of C from
R can be generalized as follows. Let [E D IF be fields and let ¢« € E be some element satisfying
t € F and 12 € F. Then I claim that the following set is a subfield of E:

F(.) :={a+b.:a,beF}.

Furthermore, the conjugation operator (a + bt)* = (a — bt) behaves exactly like complex
conjugation. Jargon: We say that F(¢) O F is a quadratic field extension. The following
Lemma will be useful in our discussion of impossible constructions:

Consider a polynomial f(x) € Flx] of degree 3. If f(x) has some root o € F(1)
in a quadratic field extension then I claim that f(x) also has a root in F.

Prove the Lemma. [Hint: Let o € F(¢) be aroot of f(x). If « € F then we are done. Otherwise,
the conjugate a* € [F(v) is another root of f(z), hence by Descartes’ Factor Theorem we have

f(z) = (z —a)(x — a)g(x) for some g(x) € F(i)[z] of degree 1.
Use Problem 4(b) to show that g(z) € F[z], hence g(z) has a root in F.]



