
Math 461 Spring 2020
Homework 5 Drew Armstrong

Problem 1. Use the Rational Root Test to split the following polynomial:

f(x) = 8x3 + 4x2 − 2x− 1 ∈ Q[x].

Problem 2. Symmetric Polynomials. Suppose that the polynomial x3 + x2 + 2x+ 3 has
the roots r, s, t in some field. Find some integer coefficients a, b, c ∈ Z such that the polynomial
x3 + ax2 + bx+ c has the roots rs, rt, st.

Problem 3. Some Specific Cyclotomic Polynomials. Recall the definition of the nth
cyclotomic polynomial:

Φn(x) =
∏

1≤k≤n
gcd(k,n)=1

(x− e2πik/n).

(a) If p is prime, show that Φp(x) = 1 + x + x2 + · · · + xp−1. [Hint: In this case we have
gcd(k, p) = 1 for all 1 ≤ k < p and hence Φp(x) = (x − ω)(x − ω2) · · · (x − ωp−1) for

ω = e2πi/p. On the other hand, we know that xp − 1 = (x− 1)(x− ω) · · · (x− ωp−1).]
(b) If n = 2m for some m ≥ 1, show that Φn(x) = 1 + xn/2. [Hint: Show that the roots

of Φn(x) are precisely the (n/2)th roots of −1. First, observe that gcd(k, n) = 1 if

and only if k is odd, hence the roots of Φn(x) are (e2πi/n)odd. Second, observe that

αn/2 = −1 = ei(π+2πk) implies α = ei(π+2πk)/(n/2) = (e2πi/n)1+2k for all k ∈ Z.]

Problem 4. Uniqueness of Quotient and Remainder. Let F be a field and consider
polynomials f(x), g(x) ∈ F[x] with g(x) 6= 0(x).

(a) Suppose that we have q1(x), r1(x), q2(x), r2(x) ∈ F[x] satisfying{
f(x) = q1(x)g(x) + r1(x),
deg(r1) < deg(g),

{
f(x) = q2(x)g(x) + r2(x),
deg(r2) < deg(g).

In this case, prove that q1(x) = q2(x) and r1(x) = r2(x). [Hint: First note that
(q1 − q2)g = (r2 − r1). If q1 6= q2 then this implies that deg(r2 − r1) ≥ deg(g). On the
other hand, we have deg(r2 − r1) ≤ max{deg(r1), deg(r2)}.]

(b) Now let R ⊆ F be a subring. Suppose that we have f(x), g(x) ∈ R[x] where g(x)
has leading coefficient 1, and suppose that f(x) = g(x)q(x) for some q(x) ∈ F[x].
In this case, use part (a) to show that we must actually have q(x) ∈ R[x]. [Hint:
Since g(x) ∈ R[x] has leading coefficient 1, we may apply long division to obtain
f(x) = g(x)q′(x) + r′(x) for some q′(x), r′(x) ∈ R[x] with deg(r′) < deg(g′). On the
other hand, we have assumed that f(x) = g(x)q(x) + 0 for some q(x) ∈ F[x]. Apply
(a) to show that q(x) = q′(x), and hence q(x) ∈ R[x].]

Problem 5. Cyclotomic Polynomials Have Integer Coefficients. We will prove in
class that cyclotomic polynomials satisfy the following identity:

xn − 1 =
∏

1≤d≤n
d|n

Φd(x).

Use this identity and Problem 4(b) to prove by induction that Φn(x) ∈ Z[x] for all n ≥ 1.
[Hint: Suppose that we have xn−1 = Φn(x)q(x) for some polynomial q(x) ∈ Z[x]. Then since
Φn(x) ∈ C[x] has leading coefficient 1, we can apply Problem 4(b) with R = Z and F = C.]



Problem 6. A Property of Quadratic Field Extensions. The construction of C from
R can be generalized as follows. Let E ⊇ F be fields and let ι ∈ E be some element satisfying
ι 6∈ F and ι2 ∈ F. Then I claim that the following set is a subfield of E:

F(ι) := {a+ bι : a, b ∈ F}.
Furthermore, the conjugation operator (a + bι)∗ = (a − bι) behaves exactly like complex
conjugation. Jargon: We say that F(ι) ⊇ F is a quadratic field extension. The following
Lemma will be useful in our discussion of impossible constructions:

Consider a polynomial f(x) ∈ F[x] of degree 3. If f(x) has some root α ∈ F(ι)
in a quadratic field extension then I claim that f(x) also has a root in F.

Prove the Lemma. [Hint: Let α ∈ F(ι) be a root of f(x). If α ∈ F then we are done. Otherwise,
the conjugate α∗ ∈ F(ι) is another root of f(x), hence by Descartes’ Factor Theorem we have

f(x) = (x− α)(x− α∗)g(x) for some g(x) ∈ F(ι)[x] of degree 1.

Use Problem 4(b) to show that g(x) ∈ F[x], hence g(x) has a root in F.]


