Problem 1. Complex Numbers as Real 2×2 Matrices. For any complex number $\alpha=a+b i \in \mathbb{C}$ with $a, b \in \mathbb{R}$ we define the following matrix:

$$
M_{\alpha}:=\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right) .
$$

(a) Check that for all $r \in \mathbb{R}$ and $\alpha \in \mathbb{C}$ we have $M_{(r \alpha)}=r M_{\alpha}$.
(b) Check that for all $\alpha, \beta \in \mathbb{C}$ we have $M_{\alpha+\beta}=M_{\alpha}+M_{\beta}$ and $M_{\alpha \beta}=M_{\alpha} M_{\beta}$.
(c) Check that for all $\alpha \in \mathbb{C}$ we have $\operatorname{det}\left(M_{\alpha}\right)=|\alpha|^{2}$.
(d) Check that for all $\alpha \in \mathbb{C}$ we have $\left(M_{\alpha}\right)^{*}=M_{\left(\alpha^{*}\right)}$, where the star operation denotes the transpose matrix and the complex conjugate, respectively.
(a): For all $r \in \mathbb{R}$ and $\alpha=a+b i \in \mathbb{C}$ we have

$$
M_{(r \alpha)}=M_{(r a+r b i)}=\left(\begin{array}{cc}
r a & -r b \\
r b & r a
\end{array}\right)=r\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)=r M_{\alpha} .
$$

(b): For all $\alpha=a+b i \in \mathbb{C}$ and $\beta=c+d i \in \mathbb{C}$ we have

$$
M_{\alpha+\beta}=M_{(a+c)+(b+d) i}=\left(\begin{array}{cc}
a+c & -(b+d) \\
b+d & a+c
\end{array}\right)=\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)+\left(\begin{array}{cc}
c & -d \\
d & c
\end{array}\right)=M_{\alpha}+M_{\beta}
$$

Furthermore, since $\alpha \beta=(a c-b d)+(a d+b c) i$, we have

$$
\begin{aligned}
M_{\alpha} M_{\beta} & =\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)\left(\begin{array}{cc}
c & -d \\
d & c
\end{array}\right) \\
& =\left(\begin{array}{ll}
a c-b d & -a d-b c \\
b c+a d & -b d+a c
\end{array}\right) \\
& =\left(\begin{array}{cc}
a c-b d & -(a d+b c) \\
a d+b c & a c-b d
\end{array}\right)=M_{\alpha \beta} .
\end{aligned}
$$

(c): For all $\alpha=a+b i \in \mathbb{C}$ we have

$$
\operatorname{det}\left(M_{\alpha}\right)=\operatorname{det}\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)=a a-(-b) b=a^{2}+b^{2}=|\alpha|^{2}
$$

[Remark: For all $\alpha, \beta \in \mathbb{C}$, it follows from the multiplicative property of determinants that

$$
|\alpha|^{2}|\beta|^{2}=\operatorname{det}\left(M_{\alpha}\right) \operatorname{det}\left(M_{\beta}\right)=\operatorname{det}\left(M_{\alpha} M_{\beta}\right)=\operatorname{det}\left(M_{\alpha \beta}\right)=|\alpha \beta|^{2} .
$$

This is another way to prove the multiplicative property of absolute value.]
[Remark: There wasn't really anything to do in this problem. I just wanted you to observe that these facts are true. In modern jargon, we say that the function $\alpha \mapsto M_{\alpha}$ is an injective homomorphism of \mathbb{R}-algebras.]
(d): For all $\alpha=a+b i \in \mathbb{C}$ we have

$$
\left(M_{\alpha}\right)^{*}=\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)^{*}=\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)=\left(\begin{array}{cc}
a & -(-b) \\
-b & a
\end{array}\right)=M_{a-b i}=M_{\left(\alpha^{*}\right)}
$$

Problem 2. Greatest Common Divisor. Let $a, b \in \mathbb{Z}$ with $d=\operatorname{gcd}(a, b)$. Since d is a common divisor of a and b we must have $a=d a^{\prime}$ and $b=d b^{\prime}$ for some integers $a^{\prime}, b^{\prime} \in \mathbb{Z}$. In this case, prove that the numbers a^{\prime}, b^{\prime} are coprime:

$$
\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1
$$

[HInt: From Bézout's Identity we know that $a x+b y=d$ for some (non-unique) integers $x, y \in \mathbb{Z}$. Use this to show that any common divisor $e \mid a^{\prime}$ and $e \mid b^{\prime}$ must satisfy $e \mid 1$.]

Proof. Let $d=\operatorname{gcd}(a, b)$ with $a=d a^{\prime}$ and $b=d b^{\prime}$ for some integers $a^{\prime}, b^{\prime} \in \mathbb{Z}$. From Bézout's Identity there exist some $x, y \in \mathbb{Z}$ such that $a x+b y=d$, hence we have

$$
\begin{aligned}
a x+b y & =d \\
d a^{\prime} x+d b^{\prime} y & =d \\
\not d\left(a^{\prime} x+b^{\prime} y\right) & =d \\
a^{\prime} x+b^{\prime} y & =1 .
\end{aligned}
$$

We will use this equation to show that $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$. To do this, let e be any common divisor of a^{\prime} and b^{\prime}, so that $a^{\prime}=e a^{\prime \prime}$ and $b^{\prime}=d b^{\prime \prime}$ for some integers $a^{\prime \prime}, b^{\prime \prime} \in \mathbb{Z}$. It follows that

$$
\begin{aligned}
a^{\prime} x+b^{\prime} y & =1 \\
e a^{\prime \prime} x+e b^{\prime \prime} y & =1 \\
e\left(a^{\prime \prime} x+b^{\prime \prime} y\right) & =1 .
\end{aligned}
$$

But this implies that $e= \pm 1$, hence the greatest common divisor of $a^{\prime \prime}$ and $b^{\prime \prime}$ is 1 .

Problem 3. Euclid's Lemma. For all integers $a, b, c \in \mathbb{Z}$, prove that

$$
(a \mid b c \text { and } \operatorname{gcd}(a, b)=1) \quad \Rightarrow \quad a \mid c .
$$

[Hint: If $\operatorname{gcd}(a, b)=1$ then from Bézout's Identity there exist some (non-unique) integers $x, y \in \mathbb{Z}$ satisfying $a x+b y=1$. Multiply both sides by c to get $a c x+b c y=c$. Now what?]

Proof. Suppose that $a \mid b c$; say $a k=b c$ for some $k \in \mathbb{Z}$. Suppose also that $\operatorname{gcd}(a, b)=1$, hence from Bézout's Identity we have $a x+b y=1$ for some $x, y \in \mathbb{Z}$. Not multiply both sides by c to obtain

$$
\begin{aligned}
a x+b y & =1 \\
a c x+b c y & =c \\
a c x+a k y & =c \\
a(c x+k y) & =c .
\end{aligned}
$$

We conclude that $a \mid c$, as desired.
Problem 4. Rational Root Test. Let $f(x)=c_{n} x^{n}+\cdots+c_{1} x+c_{0} \in \mathbb{Z}[x]$ be a polynomial of degree n with integer coefficients. Suppose that $f(x)$ has a rational root $a / b \in \mathbb{Q}$ in lowest terms, i.e., with $\operatorname{gcd}(a, b)=1$. In this case, prove that we must have

$$
a \mid c_{0} \quad \text { and } \quad b \mid c_{n} .
$$

[HInt: Suppose that $f(a / b)=0$. Multiply both sides by b^{n} and then use Euclid's Lemma.]

Proof. Let $f(a / b)=0$ for some $a, b \in \mathbb{Z}$ with $b \neq 0$ and $\operatorname{gcd}(a, b)=1$. Then we have

$$
\begin{aligned}
f(a / b) & =0 \\
c_{n}(a / b)^{n}+\cdots+c_{1}(a / b)+c_{0} & =0 \\
b^{n}\left[c_{n}(a / b)^{n}+\cdots+c_{1}(a / b)+c_{0}\right] & =0 \\
c_{n} a^{n}+c_{n-1} a^{n-1} b+\cdots+c_{1} a b^{n-1}+c_{0} b^{n} & =0
\end{aligned}
$$

By taking the term $c_{0} b^{n}$ to one side, we have

$$
\begin{aligned}
c_{0} b^{n} & =-c_{n} a^{n}-c_{n-1} a^{n-1} b-\cdots-c_{1} a b^{n-1} \\
& =a\left[-c_{n} a^{n-1}-c_{n-1} a^{n-2} b-\cdots-c_{1} b^{n-1}\right]
\end{aligned}
$$

which implies that $a \mid c_{0} b^{n}$. Then since $\operatorname{gcd}(a, b)=1$, Euclid's Lemma implies that $a \mid c_{0}$. Similarly, by taking the term $c_{n} a^{n}$ to one side, we have

$$
\begin{aligned}
c_{n} a^{n} & =-c_{n-1} a^{n-1} b-\cdots-c_{1} a b^{n-1}-c_{0} b^{n} \\
& =b\left[-c_{n-1} a^{n-1}-\cdots-c_{1} a b^{n-2}-c_{0} b^{n-1}\right]
\end{aligned}
$$

hence $b \mid c_{n} a^{n}$. Then since $\operatorname{gcd}(a, b)=1$, Euclid's Lemma implies that $b \mid c_{n}$.
Example. This result gives an algorithm to quickly find all of the rational roots of any polynomial with integer coefficients. For example, let $f(x)=4 x^{3}-12 x^{2}+11 x-3$. If $f(a / b)=0$ for some fraction $a / b \in \mathbb{Q}$ in lowest terms, then the Rational Root Test says that $a \mid 3$ and $b \mid 4$, which leads to a finite list of potential rational roots:

$$
\frac{a}{b} \in\left\{ \pm 1, \pm 3, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{1}{4}, \pm \frac{3}{4}\right\}
$$

By direct checking we find that $1,1 / 2$ and $3 / 2$ are actual roots, hence

$$
f(x)=4(x-1)(x-1 / 2)(x-3 / 2)
$$

This method does not help us to find non-rational roots.
Problem 5. The Regular 7-Gon. Let $\omega=e^{2 \pi i / 7}$ and $\alpha=\omega+\omega^{-1}=2 \cos (2 \pi / 7)$.
(a) Combine the numbers $1, \alpha, \alpha^{2}, \alpha^{3}$ to find some polynomial $f(x) \in \mathbb{Z}[x]$ of degree 3 satisfying $f(\alpha)=0$. [Hint: Use the fact that $\omega^{3}+\omega^{2}+\omega+1+\omega^{-1}+\omega^{-2}+\omega^{-3}=0$.]
(b) Use Problem 4 to show that your polynomial $f(x)$ from part (a) has no rational roots.
(c) Use part (b) to prove that the real number $\cos (2 \pi / 7) \in \mathbb{R}$ is irrational.
(a): First we compute the powers of α :

$$
\left.\begin{array}{rl}
1 & = \\
\alpha & = \\
\alpha^{2} & =\omega^{2}+0+0 \\
\alpha^{3} & =\omega^{3}+0+2+\omega^{-1} \\
& +3 \omega+0
\end{array}\right)
$$

Working from outside in, we find that

$$
\alpha^{3}+\alpha^{2}-2 \alpha-1=\omega^{3}+\omega^{2}+\omega+1+\omega^{-1}+\omega^{-2}+\omega^{-3}=0
$$

Therefore we define $f(x)=x^{3}+x^{2}-2 x-1 \in \mathbb{Z}[x]$ and we observe that $f(\alpha)=0$.
(b): Suppose that $f(x)$ has a rational root, so that $f(a / b)=0$ for some integers $a, b \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=1$. Then from part (b) we must have $a \mid 1$ and $b \mid 1$, hence $a / b= \pm 1$. But we observe that $f(1)-1 \neq 0$ and $f(-1)=-3 \neq 0$. Hence the polynomial $f(x)$ has no rational roots, and it follows from part (a) that $\alpha=2 \cos (2 \pi / 7)$ is not rational.
(c): Assume for contradiction that $\cos (2 \pi / 7)=c / d$ for some integers $c, d \in \mathbb{Z}$. It follows that

$$
\alpha=2 \cos \left(\frac{2 \pi}{7}\right)=\frac{2 c}{d} \in \mathbb{Q}
$$

which contradicts part (b). Hence we conclude that $\cos (2 \pi / 7)$ is irrational.
[Remark: We will use this result later to prove that a regular 7-gon is not constructible with straightedge and compass.]

Problem 6. Conjugation of Complex Polynomials. For any polynomial $f(x)=$ $\sum_{k \geq 0} a_{k} x^{k} \in \mathbb{C}[x]$ with complex coefficients, we define the conjugate polynomial as follows:

$$
f^{*}(x):=\sum_{k \geq 0} a_{k}^{*} x^{k} .
$$

(a) We can think of $\mathbb{R}[x] \subseteq \mathbb{C}[x]$ as a subring. For all $f(x) \in \mathbb{C}[x]$, prove that

$$
f(x) \in \mathbb{R}[x] \quad \Leftrightarrow \quad f^{*}(x)=f(x)
$$

(b) For all $f(x), g(x) \in \mathbb{C}[x]$, prove $(f+g)^{*}(x)=f^{*}(x)+g^{*}(x)$ and $(f g)^{*}(x)=f^{*}(x) g^{*}(x)$.
(c) For all $f(x) \in \mathbb{C}[x]$ use (a),(b) to prove that $f(x)+f^{*}(x) \in \mathbb{R}[x]$ and $f(x) f^{*}(x) \in \mathbb{R}[x]$.
(a): Recall that for all $a \in \mathbb{C}$ we have $a^{*}=a$ if and only if $a \in \mathbb{R}$. Then for all polynomials $f(x)=\sum_{k \geq 0} a_{k} x^{k} \in \mathbb{C}[x]$ we have

$$
\begin{aligned}
f^{*}(x)=f(x) & \Leftrightarrow \sum_{k \geq 0} a_{k}^{*} x^{k}=\sum_{k \geq 0} a_{k} x^{k} \\
& \Leftrightarrow a_{k}^{*}=a_{k} \text { for all } k \geq 0 \\
& \Leftrightarrow a_{k} \in \mathbb{R} \text { for all } k \geq 0 \\
& \Leftrightarrow f(x) \in \mathbb{R}[x] .
\end{aligned}
$$

(b): Recall that for all $a, b \in \mathbb{C}$ we have $(a+b)^{*}=a^{*}+b^{*}$ and $(a b)^{*}=a^{*} b^{*}$. Then for all $f(x)=\sum_{k \geq 0} a_{k} x^{k} \in \mathbb{C}[x]$ and $g(x)=\sum_{k \geq 0} b_{k} x^{k} \in \mathbb{C}[x]$ we have

$$
\begin{aligned}
(f+g)^{*}(x) & =\sum_{k \geq 0}\left(a_{k}+b_{k}\right)^{*} x^{k} \\
& =\sum_{k \geq 0}\left(a_{k}^{*}+b_{k}^{*}\right) x^{k} \\
& =\sum_{k \geq 0} a_{k}^{*} x^{k}+\sum_{k \geq 0} b_{k}^{*} x^{k} \\
& =f^{*}(x)+g^{*}(x)
\end{aligned}
$$

and

$$
\begin{aligned}
(f g)^{*}(x) & =\sum_{k \geq 0}\left(\sum_{i=1}^{k} a_{i} b_{k-i}\right)^{*} x^{k} \\
& =\sum_{k \geq 0}\left(\sum_{i=1}^{k} a_{i}^{*} b_{k-i}^{*}\right) x^{k} \\
& =\left(\sum_{k \geq 0} a_{k}^{*} x^{k}\right)\left(\sum_{k \geq 0} b_{k}^{*} x^{k}\right) \\
& =f^{*}(x) g^{*}(x) .
\end{aligned}
$$

(c): For all $f(x) \in \mathbb{C}[x]$ we observe from part (b) that

$$
\left(f+f^{*}\right)^{*}(x)=\left(f^{*}+f^{* *}\right)(x)=\left(f^{*}+f\right)(x)=\left(f+f^{*}\right)(x)
$$

and

$$
\left(f f^{*}\right)^{*}(x)=\left(f^{*} f^{* *}\right)(x)=\left(f^{*} f\right)(x)=\left(f f^{*}\right)(x) .
$$

Hence it follows from part (a) that $f(x)+f^{*}(x) \in \mathbb{R}[x]$ and $f(x) f^{*}(x) \in \mathbb{R}[x]$.
[Remark: We will use this last fact in our discussion of the Fundamental Theorem of Algebra. Here is a preview: Suppose that every real polynomial factors as a product of real polynomials of degrees 1 and 2. Now consider any complex polynomial $f(x) \in \mathbb{C}[x]$. Since $g(x)=f(x) f^{*}(x)$ has real coefficients we know that $g(x)$ factors as a product of real polynomials of degrees 1 and 2 , hence by the quadratic formula we know that $g(x)$ splits over \mathbb{C}. Now suppose for contradiction that there exists a prime polynomial $p(x) \in \mathbb{C}[x]$ of degree ≥ 2 such that $p(x) \mid f(x)$. Then we also have $p(x) \mid g(x)$, which contradicts the fact that $g(x)$ splits over \mathbb{C}. We conclude that $f(x)$ also splits over \mathbb{C}. In summary, we have shown that the real version of the FTA implies the complex version of the FTA.]

