Problem 1. Complex Numbers as Real 2×2 Matrices. For any complex number $\alpha=a+b i \in \mathbb{C}$ with $a, b \in \mathbb{R}$ we define the following matrix:

$$
M_{\alpha}:=\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right) .
$$

(a) Check that for all $r \in \mathbb{R}$ and $\alpha \in \mathbb{C}$ we have $M_{(r \alpha)}=r M_{\alpha}$.
(b) Check that for all $\alpha, \beta \in \mathbb{C}$ we have $M_{\alpha+\beta}=M_{\alpha}+M_{\beta}$ and $M_{\alpha \beta}=M_{\alpha} M_{\beta}$.
(c) Check that for all $\alpha \in \mathbb{C}$ we have $\operatorname{det}\left(M_{\alpha}\right)=|\alpha|^{2}$.
(d) Check that for all $\alpha \in \mathbb{C}$ we have $\left(M_{\alpha}\right)^{*}=M_{\left(\alpha^{*}\right)}$, where the star operation denotes the transpose matrix and the complex conjugate, respectively.

Problem 2. Greatest Common Divisor. Let $a, b \in \mathbb{Z}$ with $d=\operatorname{gcd}(a, b)$. Since d is a common divisor of a and b we must have $a=d a^{\prime}$ and $b=d b^{\prime}$ for some integers $a^{\prime}, b^{\prime} \in \mathbb{Z}$. In this case, prove that the numbers a^{\prime}, b^{\prime} are coprime:

$$
\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1
$$

[HInt: From Bézout's Identity we know that $a x+b y=d$ for some (non-unique) integers $x, y \in \mathbb{Z}$. Use this to show that any common divisor $e \mid a^{\prime}$ and $e \mid b^{\prime}$ must satisfy $e \mid 1$.]

Problem 3. Euclid's Lemma. For all integers $a, b, c \in \mathbb{Z}$, prove that

$$
(a \mid b c \text { and } \operatorname{gcd}(a, b)=1) \quad \Rightarrow \quad a \mid c
$$

[Hint: If $\operatorname{gcd}(a, b)=1$ then from Bézout's Identity there exist some (non-unique) integers $x, y \in \mathbb{Z}$ satisfying $a x+b y=1$. Multiply both sides by c to get $a c x+b c y=c$. Now what?]

Problem 4. Rational Root Test. Let $f(x)=c_{n} x^{n}+\cdots+c_{1} x+c_{0} \in \mathbb{Z}[x]$ be a polynomial of degree n with integer coefficients. Suppose that $f(x)$ has a rational root $a / b \in \mathbb{Q}$ in lowest terms, i.e., with $\operatorname{gcd}(a, b)=1$. In this case, prove that we must have

$$
a \mid c_{0} \quad \text { and } \quad b \mid c_{n} .
$$

[HInt: Suppose that $f(a / b)=0$. Multiply both sides by b^{n} and then use Euclid's Lemma.]
Problem 5. The Regular 7-Gon. Let $\omega=e^{2 \pi i / 7}$ and $\alpha=\omega+\omega^{-1}=2 \cos (2 \pi i / 7)$.
(a) Combine the numbers $1, \alpha, \alpha^{2}, \alpha^{3}$ to find some polynomial $f(x) \in \mathbb{Z}[x]$ of degree 3 satisfying $f(\alpha)=0$. [Hint: Use the fact that $\omega^{3}+\omega^{2}+\omega+1+\omega^{-1}+\omega^{-2}+\omega^{-3}=0$.]
(b) Use Problem 4 to show that your polynomial $f(x)$ from part (a) has no rational roots.
(c) Use part (b) to prove that the real number $\cos (2 \pi / 7) \in \mathbb{R}$ is irrational.

Problem 6. Conjugation of Complex Polynomials. For any polynomial $f(x)=$ $\sum_{k \geq 0} a_{k} x^{k} \in \mathbb{C}[x]$ with complex coefficients, we define the conjugate polynomial as follows:

$$
f^{*}(x):=\sum_{k \geq 0} a_{k}^{*} x^{k} .
$$

(a) We can think of $\mathbb{R}[x] \subseteq \mathbb{C}[x]$ as a subring. For all $f(x) \in \mathbb{C}[x]$, prove that

$$
f(x) \in \mathbb{R}[x] \quad \Leftrightarrow \quad f^{*}(x)=f(x)
$$

(b) For all $f(x), g(x) \in \mathbb{C}[x]$, prove $(f+g)^{*}(x)=f^{*}(x)+g^{*}(x)$ and $(f g)^{*}(x)=f^{*}(x) g^{*}(x)$.
(c) For all $f(x) \in \mathbb{C}[x]$ use (a),(b) to prove that $f(x)+f^{*}(x) \in \mathbb{R}[x]$ and $f(x) f^{*}(x) \in \mathbb{R}[x]$.

