Math 461 Spring 2020
Homework 3 Drew Armstrong

Problem 1. Difference of nth Powers. Let n > 1 be a positive integer and let w = €27%/™.

Prove that for all complex numbers a, 8 € C we have

o = B = (0 — B)(a — wB)(a —w?B) -+ (a — " B).

Recall that the polynomial 2™ — 1 € C[z] splits as follows:
" —1=(z—1(z—-w)(z—w?) - (z—w" ).

Now consider any complex numbers «, 5 € C. If 8 = 0 then there is nothing to show, so we
may assume that 8 # 0. Then we evaluate the polynomial 2™ — 1 at x = «/3 to obtain

(a/B)" —1=(a/B —1)(a)B —w)(a)B —w?) () — ")
B"(a/B)" = 1] = B" [(a/B — 1) (/B —w)(a)B —w?) -+ (af B — " 1)]
a" — B = [B(a/B — 1] [Bar/B — w)] [Bler/B —w?)] -+ [Bla)B —w" )]
= (a—B)(a—wh)(a—w?B) - (a —w"'B).

Problem 2. Integral Domains. We say that a (commutative) ring R is an integral domain
if for all a,b € R we have

ab=0 = a=0o0rb=0.
The prototypical example is the ring of integers Z, hence the name.

(a) Prove that a field is an integral domain.

(b) If R is integral domain, prove that R[x] is integral domain. [Hint: Leading coefficients.]

(c) If a,b,c € R and a # 0 in an integral domain, prove that ab = ac implies b = c.

(d) Consider any a,b € R with a|b and b|a. In this case, use part (c) to show that a = ub
for some invertible element v € R (called a unit).

(a): Let F be a field and consider a,b € F with ab = 0. If a = 0 then we are done. Otherwise, if
a # 0 then since [ is a field we can multiply both sides of ab = 0 by a~! to obtain b = 0a~! = 0.

(b): Let R be an integral domain and consider two nonzero polynomials f(z),g(z) € R[z].
By definition, this means that
f(z) = apz™ + lower terms  and  g(x) = bya™ + lower terms

for some non-negative integers 0 < m,n € Z and nonzero ring elements 0 # a,,,b, € R. By
multiplying f(x) and g(z) we obtain

f(2)g(x) = amb,z™™ + lower terms.
Finally, since R is an integral domain we know that a,,b, # 0, which implies that f(x)g(z) is
not the zero polynomial.
(c): Let R be an integral domain and consider any a,b,c € R satisfying ab = ac and a # 0.
By rearranging the equation ab = ac we have
ab = ac
ab—ac=0

a(b—c) =0.



Then since a # 0 we conclude that b — ¢ = 0, hence b = c¢. [Remark: We are not allowed to
“divide both sides by a” because R is not necessarily a field.]

(d): Let R be an integral domain and consider any a,b € R with a|b and bla. (We will assume
that a and b are both nonzero.) By definition this means that a = ub and b = va for some
elements u,v € R. In order to show that u is invertible, we observe that a = ub = uva and
then we cancel a from both sides to obtain 1 = uw.

Discussion: Every field is an integral domain but not every integral domain is a field. For
example, the rings Z and F[z] are integral domains but they are not fields (for example, because
1/2 is not an integer and 1/z is not a polynomial). Later in the course we will encounter rings
that are not integral domains. For example, let Z/47Z denote the set {0, 1,2, 3} together with
the following operations:

+]/0 1 2 3 x|0 1 2 3
0j0 1 2 3 0[0 000
111230 110 1 2 3
202 301 200 2 0 2
313 01 2 3]0 3 21

We will see that these operations define a ring structure on the set {0, 1,2,3}. However, this
ring is not an integral domain because 2 -2 = 0.

Problem 3. Bézout’s Identity. Let a,b € Z (not both zero) and consider the set
S={ax+by:x,y € Z,ax+by > 1}.
By well-ordering this set contains a smallest elemement; call it d € S.

(a) Prove that d|a and d|b. [Hint: There exist ¢, € Z with a = dg+r and 0 < r < d.
Show that r > 1 leads to a contradiction.]
(b) If e|a and e|b for some e € Z, show that e|d.

It follows that d is the greatest common divisor of a and b. In particular, we have shown that

there exist some (non-unique) integers x,y € Z satisfying ged(a, b) = ax + by.

(a): Since d € S there exist some z,y € Z satisfying d = ax + by > 1. Then from the Division

Theorem there exist some ¢,r € Z with a = dg+ r and 0 < r < d. Observe that
d>r=a—dqg=a— (ax +by)g=a(l — xq) +b(—yq) = ax’ + by’ >0

for some 2/, € Z. If r # 0 then this implies that 7 is an element of S that is strictly smaller
than d, which is a contradiction. Therefore we must have r = 0 and hence d|a. A similar
argument shows that d|b.

(b): Let e € Z be any integer satisfying e|a and elb. Let’s say a = ea’ and b = eb’ for some

a',t' € Z. Then since d = ax + by for some x,y € Z we have
d=axr+by=ecdx+eby=ecldz+by),

and hence e|d.

In summary, we have shown that d = ax + by is a common divisor of a and b, which is larger
than (in fact, divisible by) every other common divisor. In other words, d = ged(a, b).

Problem 4. De Moivre’s Formula.

(a) Use de Moivre’s formula to express cos(26) as a polynomial in cos 6.
(b) Solve this polynomial to obtain a formula for cos# in terms of cos(26).



(c) Use your formula from (b) to obtain exact values for cos(7/2") when n = 1,2, 3,4.

(a): De Moivre’s formula says that
cos(260) + isin(26) = (cos @ + isinf)>
= (cos?# — sin? @) + (2 cos fsin 6).
Then comparing real parts gives

cos(26) = cos? § — sin® 6 = cos>  — (1 — cos? ) = 2cos? O — 1.

(b): Rearranging gives
2(cos 0)? + 0(cos ) + (—1 — cos(20)) = 0,
hence the quadratic formula says

+ /4T 20))
0 +COS ﬂ:; 2 + 2 cos(20).

If —/2 <6 < m/2 then we choose the posmve sign; otherwise we choose the negative sign.

cosf =

(c): Since cos(m/2) = 0, the formula from part (b) gives
1 1
cos(m/4) = 3 2 +2cos(m/2) = 5\/5

Applying the formula again gives

cos(m/8) = \/2+2003 (r/4) = 24+ V2

and again gives
cos(m/16) = \/2+2cos (7/8) = 2+

Discussion: Since cos(7w/2™) — 1 as n — 0o, we conclude that

:;\/2+\/2+\/2+W.

That’s strange.

Problem 5. Quadratic Formula Again.

(a) Find the two complex square roots of 7. [Hint: Express i in polar form.]
(b) Use part (a) and the quadratic formula to solve the following equation for z:

2%+ (2i)z — (1+1i) = 0.

(a): For any angle € R, the square roots of e are /2 and e'(?/2+7) = _¢i/2_ Since i = ¢'™/2
this implies that the square roots of i are ™4 = (1+1)/v/2 and e®™/* = —(1 +1)/+/2, which
we can express in Cartesian form as

™4 = cos(m/4) + isin(n/4) = 1/V2+i/V2 = (1+1)/V2,
e/t = cos(5m/4) + isin(5m/4) = —1/vV2 —i/V2 = —(1+i)/V2.



(b): Applying the quadratic formula to the equation 22 + (2i)z — (1 + i) = 0 gives
it ~5 . ot SCAT AT iy .
_ 2 V(20)2 + 4(1 + 1) _ 2 (—4+4+i) 2&2%:—@'1\6
2 2 2
Then combining this with the result of (a) gives
r=—i+Vi=—i+(1+i)/V2

Note that these roots are not complex conjugates, reflecting the fact that the polynomial does
not have real coefficients.

Problem 6. Cyclotomic Polynomials. Let ¢2™/™ for some positive integer n > 1 and

recall that w!,w?,...,w" are the nth roots of unity. We say that w* is a primitive nth root of

unity when ged(k,n) = 1, and we define the nth cyclotomic polynomial as follows:

(I)n(x> = H (.TI — wk).
1<k<n
ged(k,n)=1

(a) Compute the polynomials ®;(x), ®o(x), P4(z), Pg(x), and observe that each has inte-
ger coefficients. [Hint: Problem 5(a).]
(b) Prove that the polynomial 28 — 1 € Q[z] can be factored as follows:

.’L'8 —1= <I>1(x)<I>2(x)<I>4(a;)<IJg(x)

(a): We will use the notation wy = e>™/? to distinguish the dth roots of unity for different
values of d. The primitive 1st roots of unity are w% =1, hence

P1(z)=(r—wi)=x—1.
The primitive 2nd roots of unity are wj = —1, hence

Py(z)=(z—wi) =z +1.

The primitive 4th roots of unity are wj =i and wj = —i, hence

Dy(z) = (2 — wi)(z — W) = (x —i)(z +1i) = 2° + 1.

Finally, the primitive 8th roots of unity are wi,ws,w,ws. To be explicit, the formulas for

cos(27k/8) and sin(27k/8) tell us that
wa = cos(2m/8) + isin(2m/8) = (1 +1)/V2,
wi = cos(6m/8) + isin(67/8) = (—1 +1)/V2,
wg = cos(10m/8) + isin(107/8) = (=1 — 1) /V/2,
wl = cos(14m/8) + isin(147/8) = (1 —i)/V/2.
By grouping these into complex conjugate pairs, we obtain
Ds(z) = (@ — (1 +)/VD) (@ — (1 =)V (@ — (~1+3)/V2)(@ — (-1 = )/v/2)
= (@2 = V2 +1)(z® + V22 +1)
=zt 1.

Alternatively, one could prove that the primitive 8th roots of +1 are all of the 4th roots of
—1. Then it is clear that ®g(x) = z* — (—1).

(b): One can check by hand that
D1 (2)Py(2) Py (z)Pg(x) = (z — 1)(z 4+ 1)(2® + 1)(at +1) = 2% — 1.



Alternatively, one can use the fact that wj = e2mia/b — p2mic/d — wy for all fractions satisfying
a/b = c/d. By reducing the fractions k/8 (1 < k < 8) into lowest terms, we observe that the
8th roots of unity can be partitioned into the sets of primitive dth roots of unity for each

divisor d = {1,2,4,8} of 8:
{ws, wf, f, wi, w3, w8, wl, Wi}
= {wg, wi, wE, wy, W, Wi, W, wi }
= {wi} U{wz} U {w), wi} U {ws, i, w3, wi}-

Then we obtain the factorization 2% — 1 = &1 (2)®o(x)®4(z)Pg(x) without even knowing the
coefficients of the cyclotomic polynomials. Here is a picture:

2 1 .
LS '—qu:L

2 . %
Wy = C1H0/o .
LU% = ('\ + L)/\r:L

§ = Q) = 3 1:
M Wy =194 = ]

= , *_(A-0)
S Y oo = (e

6_ 3
Wg= By =~

Discussion: This same argument can be used to prove the identity
" —1= H Dy(x)
din
for any n > 1. I might ask you to prove this on a future homework. I might also ask you to
use this identity to prove by induction that @, (x) always has integer coefficients.



