Problem 1. Difference of $n \mathbf{t h}$ Powers. Let $n \geq 1$ be a positive integer and let $\omega=e^{2 \pi i / n}$. Prove that for all complex numbers $\alpha, \beta \in \mathbb{C}$ we have

$$
\alpha^{n}-\beta^{n}=(\alpha-\beta)(\alpha-\omega \beta)\left(\alpha-\omega^{2} \beta\right) \cdots\left(\alpha-\omega^{n-1} \beta\right) .
$$

Recall that the polynomial $x^{n}-1 \in \mathbb{C}[x]$ splits as follows:

$$
x^{n}-1=(x-1)(x-\omega)\left(x-\omega^{2}\right) \cdots\left(x-\omega^{n-1}\right) .
$$

Now consider any complex numbers $\alpha, \beta \in \mathbb{C}$. If $\beta=0$ then there is nothing to show, so we may assume that $\beta \neq 0$. Then we evaluate the polynomial $x^{n}-1$ at $x=\alpha / \beta$ to obtain

$$
\begin{aligned}
(\alpha / \beta)^{n}-1 & =(\alpha / \beta-1)(\alpha / \beta-\omega)\left(\alpha / \beta-\omega^{2}\right) \cdots\left(\alpha / \beta-\omega^{n-1}\right) \\
\beta^{n}\left[(\alpha / \beta)^{n}-1\right] & =\beta^{n}\left[(\alpha / \beta-1)(\alpha / \beta-\omega)\left(\alpha / \beta-\omega^{2}\right) \cdots\left(\alpha / \beta-\omega^{n-1}\right)\right] \\
\alpha^{n}-\beta^{n} & =[\beta(\alpha / \beta-1)][\beta(\alpha / \beta-\omega)]\left[\beta\left(\alpha / \beta-\omega^{2}\right)\right] \cdots\left[\beta\left(\alpha / \beta-\omega^{n-1}\right)\right] \\
& =(\alpha-\beta)(\alpha-\omega \beta)\left(\alpha-\omega^{2} \beta\right) \cdots\left(\alpha-\omega^{n-1} \beta\right) .
\end{aligned}
$$

Problem 2. Integral Domains. We say that a (commutative) ring R is an integral domain if for all $a, b \in R$ we have

$$
a b=0 \quad \Rightarrow \quad a=0 \text { or } b=0 .
$$

The prototypical example is the ring of integers \mathbb{Z}, hence the name.
(a) Prove that a field is an integral domain.
(b) If R is integral domain, prove that $R[x]$ is integral domain. [Hint: Leading coefficients.]
(c) If $a, b, c \in R$ and $a \neq 0$ in an integral domain, prove that $a b=a c$ implies $b=c$.
(d) Consider any $a, b \in R$ with $a \mid b$ and $b \mid a$. In this case, use part (c) to show that $a=u b$ for some invertible element $u \in R$ (called a unit).
(a): Let \mathbb{F} be a field and consider $a, b \in \mathbb{F}$ with $a b=0$. If $a=0$ then we are done. Otherwise, if $a \neq 0$ then since \mathbb{F} is a field we can multiply both sides of $a b=0$ by a^{-1} to obtain $b=0 a^{-1}=0$.
(b): Let R be an integral domain and consider two nonzero polynomials $f(x), g(x) \in R[x]$. By definition, this means that

$$
f(x)=a_{m} x^{m}+\text { lower terms } \quad \text { and } \quad g(x)=b_{n} x^{n}+\text { lower terms }
$$

for some non-negative integers $0 \leq m, n \in \mathbb{Z}$ and nonzero ring elements $0 \neq a_{m}, b_{n} \in R$. By multiplying $f(x)$ and $g(x)$ we obtain

$$
f(x) g(x)=a_{m} b_{n} x^{m+n}+\text { lower terms } .
$$

Finally, since R is an integral domain we know that $a_{m} b_{n} \neq 0$, which implies that $f(x) g(x)$ is not the zero polynomial.
(c): Let R be an integral domain and consider any $a, b, c \in R$ satisfying $a b=a c$ and $a \neq 0$. By rearranging the equation $a b=a c$ we have

$$
\begin{aligned}
a b & =a c \\
a b-a c & =0 \\
a(b-c) & =0 .
\end{aligned}
$$

Then since $a \neq 0$ we conclude that $b-c=0$, hence $b=c$. [Remark: We are not allowed to "divide both sides by a " because R is not necessarily a field.]
(d): Let R be an integral domain and consider any $a, b \in R$ with $a \mid b$ and $b \mid a$. (We will assume that a and b are both nonzero.) By definition this means that $a=u b$ and $b=v a$ for some elements $u, v \in R$. In order to show that u is invertible, we observe that $a=u b=u v a$ and then we cancel a from both sides to obtain $1=u v$.

Discussion: Every field is an integral domain but not every integral domain is a field. For example, the rings \mathbb{Z} and $\mathbb{F}[x]$ are integral domains but they are not fields (for example, because $1 / 2$ is not an integer and $1 / x$ is not a polynomial). Later in the course we will encounter rings that are not integral domains. For example, let $\mathbb{Z} / 4 \mathbb{Z}$ denote the set $\{0,1,2,3\}$ together with the following operations:

We will see that these operations define a ring structure on the set $\{0,1,2,3\}$. However, this ring is not an integral domain because $2 \cdot 2=0$.

Problem 3. Bézout's Identity. Let $a, b \in \mathbb{Z}$ (not both zero) and consider the set

$$
S=\{a x+b y: x, y \in \mathbb{Z}, a x+b y \geq 1\} .
$$

By well-ordering this set contains a smallest elemement; call it $d \in S$.
(a) Prove that $d \mid a$ and $d \mid b$. [Hint: There exist $q, r \in \mathbb{Z}$ with $a=d q+r$ and $0 \leq r<d$. Show that $r \geq 1$ leads to a contradiction.]
(b) If $e \mid a$ and $e \mid b$ for some $e \in \mathbb{Z}$, show that $e \mid d$.

It follows that d is the greatest common divisor of a and b. In particular, we have shown that there exist some (non-unique) integers $x, y \in \mathbb{Z}$ satisfying $\operatorname{gcd}(a, b)=a x+b y$.
(a): Since $d \in S$ there exist some $x, y \in \mathbb{Z}$ satisfying $d=a x+b y \geq 1$. Then from the Division Theorem there exist some $q, r \in \mathbb{Z}$ with $a=d q+r$ and $0 \leq r<d$. Observe that

$$
d>r=a-d q=a-(a x+b y) q=a(1-x q)+b(-y q)=a x^{\prime}+b y^{\prime} \geq 0
$$

for some $x^{\prime}, y^{\prime} \in \mathbb{Z}$. If $r \neq 0$ then this implies that r is an element of S that is strictly smaller than d, which is a contradiction. Therefore we must have $r=0$ and hence $d \mid a$. A similar argument shows that $d \mid b$.
(b): Let $e \in \mathbb{Z}$ be any integer satisfying $e \mid a$ and $e \mid b$. Let's say $a=e a^{\prime}$ and $b=e b^{\prime}$ for some $a^{\prime}, b^{\prime} \in \mathbb{Z}$. Then since $d=a x+b y$ for some $x, y \in \mathbb{Z}$ we have

$$
d=a x+b y=e a^{\prime} x+e b^{\prime} y=e\left(a^{\prime} x+b^{\prime} y\right)
$$

and hence $e \mid d$.
In summary, we have shown that $d=a x+b y$ is a common divisor of a and b, which is larger than (in fact, divisible by) every other common divisor. In other words, $d=\operatorname{gcd}(a, b)$.

Problem 4. De Moivre's Formula.
(a) Use de Moivre's formula to express $\cos (2 \theta)$ as a polynomial in $\cos \theta$.
(b) Solve this polynomial to obtain a formula for $\cos \theta$ in terms of $\cos (2 \theta)$.
(c) Use your formula from (b) to obtain exact values for $\cos \left(\pi / 2^{n}\right)$ when $n=1,2,3,4$.
(a): De Moivre's formula says that

$$
\begin{aligned}
\cos (2 \theta)+i \sin (2 \theta) & =(\cos \theta+i \sin \theta)^{2} \\
& =\left(\cos ^{2} \theta-\sin ^{2} \theta\right)+i(2 \cos \theta \sin \theta)
\end{aligned}
$$

Then comparing real parts gives

$$
\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta=\cos ^{2} \theta-\left(1-\cos ^{2} \theta\right)=2 \cos ^{2} \theta-1 .
$$

(b): Rearranging gives

$$
2(\cos \theta)^{2}+0(\cos \theta)+(-1-\cos (2 \theta))=0
$$

hence the quadratic formula says

$$
\cos \theta=\frac{0 \pm \sqrt{4(1+\cos (2 \theta))}}{4}= \pm \frac{1}{2} \sqrt{2+2 \cos (2 \theta)}
$$

If $-\pi / 2 \leq \theta \leq \pi / 2$ then we choose the positive sign; otherwise we choose the negative sign.
(c): Since $\cos (\pi / 2)=0$, the formula from part (b) gives

$$
\cos (\pi / 4)=\frac{1}{2} \sqrt{2+2 \cos (\pi / 2)}=\frac{1}{2} \sqrt{2}
$$

Applying the formula again gives

$$
\cos (\pi / 8)=\frac{1}{2} \sqrt{2+2 \cos (\pi / 4)}=\frac{1}{2} \sqrt{2+\sqrt{2}},
$$

and again gives

$$
\cos (\pi / 16)=\frac{1}{2} \sqrt{2+2 \cos (\pi / 8)}=\frac{1}{2} \sqrt{2+\sqrt{2+\sqrt{2}}} .
$$

Discussion: Since $\cos \left(\pi / 2^{n}\right) \rightarrow 1$ as $n \rightarrow \infty$, we conclude that

$$
1=\frac{1}{2} \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\cdots}}}}
$$

That's strange.

Problem 5. Quadratic Formula Again.

(a) Find the two complex square roots of i. [Hint: Express i in polar form.]
(b) Use part (a) and the quadratic formula to solve the following equation for x :

$$
x^{2}+(2 i) x-(1+i)=0 .
$$

(a): For any angle $\theta \in \mathbb{R}$, the square roots of $e^{i \theta}$ are $e^{i \theta / 2}$ and $e^{i(\theta / 2+\pi)}=-e^{i \theta / 2}$. Since $i=e^{i \pi / 2}$ this implies that the square roots of i are $e^{i \pi / 4}=(1+i) / \sqrt{2}$ and $e^{i 5 \pi / 4}=-(1+i) / \sqrt{2}$, which we can express in Cartesian form as

$$
\begin{aligned}
e^{i \pi / 4} & =\cos (\pi / 4)+i \sin (\pi / 4)=1 / \sqrt{2}+i / \sqrt{2}=(1+i) / \sqrt{2}, \\
e^{i 5 \pi / 4} & =\cos (5 \pi / 4)+i \sin (5 \pi / 4)=-1 / \sqrt{2}-i / \sqrt{2}=-(1+i) / \sqrt{2} .
\end{aligned}
$$

(b): Applying the quadratic formula to the equation $x^{2}+(2 i) x-(1+i)=0$ gives

$$
x=\frac{-2 i \pm \sqrt{(2 i)^{2}+4(1+i)}}{2}=\frac{-2 i \pm \sqrt{(-4+4+i)}}{2}=\frac{-2 i \pm 2 \sqrt{i}}{2}=-i \pm \sqrt{i}
$$

Then combining this with the result of (a) gives

$$
x=-i \pm \sqrt{i}=-i \pm(1+i) / \sqrt{2}
$$

Note that these roots are not complex conjugates, reflecting the fact that the polynomial does not have real coefficients.

Problem 6. Cyclotomic Polynomials. Let $e^{2 \pi i / n}$ for some positive integer $n \geq 1$ and recall that $\omega^{1}, \omega^{2}, \ldots, \omega^{n}$ are the nth roots of unity. We say that ω^{k} is a primitive nth root of unity when $\operatorname{gcd}(k, n)=1$, and we define the nth cyclotomic polynomial as follows:

$$
\Phi_{n}(x):=\prod_{\substack{1 \leq k \leq n \\ \operatorname{gcd}(k, n)=1}}\left(x-\omega^{k}\right) .
$$

(a) Compute the polynomials $\Phi_{1}(x), \Phi_{2}(x), \Phi_{4}(x), \Phi_{8}(x)$, and observe that each has integer coefficients. [Hint: Problem 5(a).]
(b) Prove that the polynomial $x^{8}-1 \in \mathbb{Q}[x]$ can be factored as follows:

$$
x^{8}-1=\Phi_{1}(x) \Phi_{2}(x) \Phi_{4}(x) \Phi_{8}(x) .
$$

(a): We will use the notation $\omega_{d}=e^{2 \pi i / d}$ to distinguish the d th roots of unity for different values of d. The primitive 1 st roots of unity are $\omega_{1}^{1}=1$, hence

$$
\Phi_{1}(x)=\left(x-\omega_{1}^{1}\right)=x-1 .
$$

The primitive 2 nd roots of unity are $\omega_{2}^{1}=-1$, hence

$$
\Phi_{2}(x)=\left(x-\omega_{2}^{1}\right)=x+1
$$

The primitive 4th roots of unity are $\omega_{4}^{1}=i$ and $\omega_{4}^{3}=-i$, hence

$$
\Phi_{2}(x)=\left(x-\omega_{4}^{1}\right)\left(x-\omega_{4}^{3}\right)=(x-i)(x+i)=x^{2}+1
$$

Finally, the primitive 8 th roots of unity are $\omega_{8}^{1}, \omega_{8}^{3}, \omega_{8}^{5}, \omega_{8}^{7}$. To be explicit, the formulas for $\cos (2 \pi k / 8)$ and $\sin (2 \pi k / 8)$ tell us that

$$
\begin{aligned}
\omega_{8}^{1} & =\cos (2 \pi / 8)+i \sin (2 \pi / 8)=(1+i) / \sqrt{2}, \\
\omega_{8}^{3} & =\cos (6 \pi / 8)+i \sin (6 \pi / 8)=(-1+i) / \sqrt{2}, \\
\omega_{8}^{5} & =\cos (10 \pi / 8)+i \sin (10 \pi / 8)=(-1-i) / \sqrt{2}, \\
\omega_{8}^{7} & =\cos (14 \pi / 8)+i \sin (14 \pi / 8)=(1-i) / \sqrt{2} .
\end{aligned}
$$

By grouping these into complex conjugate pairs, we obtain

$$
\begin{aligned}
\Phi_{8}(x) & =(x-(1+i) / \sqrt{2})(x-(1-i) / \sqrt{2})(x-(-1+i) / \sqrt{2})(x-(-1-i) / \sqrt{2}) \\
& =\left(x^{2}-\sqrt{2} x+1\right)\left(x^{2}+\sqrt{2} x+1\right) \\
& =x^{4}+1 .
\end{aligned}
$$

Alternatively, one could prove that the primitive 8th roots of +1 are all of the 4th roots of -1 . Then it is clear that $\Phi_{8}(x)=x^{4}-(-1)$.
(b): One can check by hand that

$$
\Phi_{1}(x) \Phi_{2}(x) \Phi_{4}(x) \Phi_{8}(x)=(x-1)(x+1)\left(x^{2}+1\right)\left(x^{4}+1\right)=x^{8}-1
$$

Alternatively, one can use the fact that $\omega_{b}^{a}=e^{2 \pi i a / b}=e^{2 \pi i c / d}=\omega_{d}^{c}$ for all fractions satisfying $a / b=c / d$. By reducing the fractions $k / 8(1 \leq k \leq 8)$ into lowest terms, we observe that the 8 th roots of unity can be partitioned into the sets of primitive d th roots of unity for each divisor $d=\{1,2,4,8\}$ of 8 :

$$
\begin{aligned}
& \left\{\omega_{8}^{1}, \omega_{8}^{2}, \omega_{8}^{3}, \omega_{8}^{4}, \omega_{8}^{5}, \omega_{8}^{6}, \omega_{8}^{7}, \omega_{8}^{8}\right\} \\
& =\left\{\omega_{8}^{1}, \omega_{4}^{1}, \omega_{8}^{3}, \omega_{2}^{1}, \omega_{8}^{5}, \omega_{4}^{3}, \omega_{8}^{7}, \omega_{1}^{1}\right\} \\
& =\left\{\omega_{1}^{1}\right\} \cup\left\{\omega_{2}^{1}\right\} \cup\left\{\omega_{4}^{1}, \omega_{4}^{3}\right\} \cup\left\{\omega_{8}^{1}, \omega_{8}^{3}, \omega_{8}^{5}, \omega_{8}^{7}\right\} .
\end{aligned}
$$

Then we obtain the factorization $x^{8}-1=\Phi_{1}(x) \Phi_{2}(x) \Phi_{4}(x) \Phi_{8}(x)$ without even knowing the coefficients of the cyclotomic polynomials. Here is a picture:

Discussion: This same argument can be used to prove the identity

$$
x^{n}-1=\prod_{d \mid n} \Phi_{d}(x)
$$

for any $n \geq 1$. I might ask you to prove this on a future homework. I might also ask you to use this identity to prove by induction that $\Phi_{n}(x)$ always has integer coefficients.

