
Math 461 Spring 2020
Homework 3 Drew Armstrong

Problem 1. Difference of nth Powers. Let n ≥ 1 be a positive integer and let ω = e2πi/n.
Prove that for all complex numbers α, β ∈ C we have

αn − βn = (α− β)(α− ωβ)(α− ω2β) · · · (α− ωn−1β).

Recall that the polynomial xn − 1 ∈ C[x] splits as follows:

xn − 1 = (x− 1)(x− ω)(x− ω2) · · · (x− ωn−1).
Now consider any complex numbers α, β ∈ C. If β = 0 then there is nothing to show, so we
may assume that β 6= 0. Then we evaluate the polynomial xn − 1 at x = α/β to obtain

(α/β)n − 1 = (α/β − 1)(α/β − ω)(α/β − ω2) · · · (α/β − ωn−1)
βn [(α/β)n − 1] = βn

[
(α/β − 1)(α/β − ω)(α/β − ω2) · · · (α/β − ωn−1)

]
αn − βn = [β(α/β − 1)] [β(α/β − ω)]

[
β(α/β − ω2)

]
· · ·
[
β(α/β − ωn−1)

]
= (α− β)(α− ωβ)(α− ω2β) · · · (α− ωn−1β).

Problem 2. Integral Domains. We say that a (commutative) ring R is an integral domain
if for all a, b ∈ R we have

ab = 0 ⇒ a = 0 or b = 0.

The prototypical example is the ring of integers Z, hence the name.

(a) Prove that a field is an integral domain.
(b) If R is integral domain, prove that R[x] is integral domain. [Hint: Leading coefficients.]
(c) If a, b, c ∈ R and a 6= 0 in an integral domain, prove that ab = ac implies b = c.
(d) Consider any a, b ∈ R with a|b and b|a. In this case, use part (c) to show that a = ub

for some invertible element u ∈ R (called a unit).

(a): Let F be a field and consider a, b ∈ F with ab = 0. If a = 0 then we are done. Otherwise, if
a 6= 0 then since F is a field we can multiply both sides of ab = 0 by a−1 to obtain b = 0a−1 = 0.

(b): Let R be an integral domain and consider two nonzero polynomials f(x), g(x) ∈ R[x].
By definition, this means that

f(x) = amx
m + lower terms and g(x) = bnx

n + lower terms

for some non-negative integers 0 ≤ m,n ∈ Z and nonzero ring elements 0 6= am, bn ∈ R. By
multiplying f(x) and g(x) we obtain

f(x)g(x) = ambnx
m+n + lower terms.

Finally, since R is an integral domain we know that ambn 6= 0, which implies that f(x)g(x) is
not the zero polynomial.

(c): Let R be an integral domain and consider any a, b, c ∈ R satisfying ab = ac and a 6= 0.
By rearranging the equation ab = ac we have

ab = ac

ab− ac = 0

a(b− c) = 0.



Then since a 6= 0 we conclude that b − c = 0, hence b = c. [Remark: We are not allowed to
“divide both sides by a” because R is not necessarily a field.]

(d): Let R be an integral domain and consider any a, b ∈ R with a|b and b|a. (We will assume
that a and b are both nonzero.) By definition this means that a = ub and b = va for some
elements u, v ∈ R. In order to show that u is invertible, we observe that a = ub = uva and
then we cancel a from both sides to obtain 1 = uv.

Discussion: Every field is an integral domain but not every integral domain is a field. For
example, the rings Z and F[x] are integral domains but they are not fields (for example, because
1/2 is not an integer and 1/x is not a polynomial). Later in the course we will encounter rings
that are not integral domains. For example, let Z/4Z denote the set {0, 1, 2, 3} together with
the following operations:

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

× 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

We will see that these operations define a ring structure on the set {0, 1, 2, 3}. However, this
ring is not an integral domain because 2 · 2 = 0.

Problem 3. Bézout’s Identity. Let a, b ∈ Z (not both zero) and consider the set

S = {ax+ by : x, y ∈ Z, ax+ by ≥ 1}.
By well-ordering this set contains a smallest elemement; call it d ∈ S.

(a) Prove that d|a and d|b. [Hint: There exist q, r ∈ Z with a = dq + r and 0 ≤ r < d.
Show that r ≥ 1 leads to a contradiction.]

(b) If e|a and e|b for some e ∈ Z, show that e|d.

It follows that d is the greatest common divisor of a and b. In particular, we have shown that
there exist some (non-unique) integers x, y ∈ Z satisfying gcd(a, b) = ax+ by.

(a): Since d ∈ S there exist some x, y ∈ Z satisfying d = ax+ by ≥ 1. Then from the Division
Theorem there exist some q, r ∈ Z with a = dq + r and 0 ≤ r < d. Observe that

d > r = a− dq = a− (ax+ by)q = a(1− xq) + b(−yq) = ax′ + by′ ≥ 0

for some x′, y′ ∈ Z. If r 6= 0 then this implies that r is an element of S that is strictly smaller
than d, which is a contradiction. Therefore we must have r = 0 and hence d|a. A similar
argument shows that d|b.

(b): Let e ∈ Z be any integer satisfying e|a and e|b. Let’s say a = ea′ and b = eb′ for some
a′, b′ ∈ Z. Then since d = ax+ by for some x, y ∈ Z we have

d = ax+ by = ea′x+ eb′y = e(a′x+ b′y),

and hence e|d.

In summary, we have shown that d = ax+ by is a common divisor of a and b, which is larger
than (in fact, divisible by) every other common divisor. In other words, d = gcd(a, b).

Problem 4. De Moivre’s Formula.

(a) Use de Moivre’s formula to express cos(2θ) as a polynomial in cos θ.
(b) Solve this polynomial to obtain a formula for cos θ in terms of cos(2θ).



(c) Use your formula from (b) to obtain exact values for cos(π/2n) when n = 1, 2, 3, 4.

(a): De Moivre’s formula says that

cos(2θ) + i sin(2θ) = (cos θ + i sin θ)2

= (cos2 θ − sin2 θ) + i(2 cos θ sin θ).

Then comparing real parts gives

cos(2θ) = cos2 θ − sin2 θ = cos2 θ − (1− cos2 θ) = 2 cos2 θ − 1.

(b): Rearranging gives

2(cos θ)2 + 0(cos θ) + (−1− cos(2θ)) = 0,

hence the quadratic formula says

cos θ =
0±

√
4(1 + cos(2θ))

4
= ±1

2

√
2 + 2 cos(2θ).

If −π/2 ≤ θ ≤ π/2 then we choose the positive sign; otherwise we choose the negative sign.

(c): Since cos(π/2) = 0, the formula from part (b) gives

cos(π/4) =
1

2

√
2 + 2 cos(π/2) =

1

2

√
2.

Applying the formula again gives

cos(π/8) =
1

2

√
2 + 2 cos(π/4) =

1

2

√
2 +
√

2,

and again gives

cos(π/16) =
1

2

√
2 + 2 cos(π/8) =

1

2

√
2 +

√
2 +
√

2.

Discussion: Since cos(π/2n)→ 1 as n→∞, we conclude that

1 =
1

2

√
2 +

√
2 +

√
2 +
√

2 + · · ·.

That’s strange.

Problem 5. Quadratic Formula Again.

(a) Find the two complex square roots of i. [Hint: Express i in polar form.]
(b) Use part (a) and the quadratic formula to solve the following equation for x:

x2 + (2i)x− (1 + i) = 0.

(a): For any angle θ ∈ R, the square roots of eiθ are eiθ/2 and ei(θ/2+π) = −eiθ/2. Since i = eiπ/2

this implies that the square roots of i are eiπ/4 = (1 + i)/
√

2 and ei5π/4 = −(1 + i)/
√

2, which
we can express in Cartesian form as

eiπ/4 = cos(π/4) + i sin(π/4) = 1/
√

2 + i/
√

2 = (1 + i)/
√

2,

ei5π/4 = cos(5π/4) + i sin(5π/4) = −1/
√

2− i/
√

2 = −(1 + i)/
√

2.



(b): Applying the quadratic formula to the equation x2 + (2i)x− (1 + i) = 0 gives

x =
−2i±

√
(2i)2 + 4(1 + i)

2
=
−2i±

√
(−4 + 4 + i)

2
=
−2i± 2

√
i

2
= −i±

√
i

Then combining this with the result of (a) gives

x = −i±
√
i = −i± (1 + i)/

√
2

Note that these roots are not complex conjugates, reflecting the fact that the polynomial does
not have real coefficients.

Problem 6. Cyclotomic Polynomials. Let e2πi/n for some positive integer n ≥ 1 and
recall that ω1, ω2, . . . , ωn are the nth roots of unity. We say that ωk is a primitive nth root of
unity when gcd(k, n) = 1, and we define the nth cyclotomic polynomial as follows:

Φn(x) :=
∏

1≤k≤n
gcd(k,n)=1

(x− ωk).

(a) Compute the polynomials Φ1(x), Φ2(x), Φ4(x), Φ8(x), and observe that each has inte-
ger coefficients. [Hint: Problem 5(a).]

(b) Prove that the polynomial x8 − 1 ∈ Q[x] can be factored as follows:

x8 − 1 = Φ1(x)Φ2(x)Φ4(x)Φ8(x).

(a): We will use the notation ωd = e2πi/d to distinguish the dth roots of unity for different
values of d. The primitive 1st roots of unity are ω1

1 = 1, hence

Φ1(x) = (x− ω1
1) = x− 1.

The primitive 2nd roots of unity are ω1
2 = −1, hence

Φ2(x) = (x− ω1
2) = x+ 1.

The primitive 4th roots of unity are ω1
4 = i and ω3

4 = −i, hence

Φ2(x) = (x− ω1
4)(x− ω3

4) = (x− i)(x+ i) = x2 + 1.

Finally, the primitive 8th roots of unity are ω1
8, ω

3
8, ω

5
8, ω

7
8. To be explicit, the formulas for

cos(2πk/8) and sin(2πk/8) tell us that

ω1
8 = cos(2π/8) + i sin(2π/8) = (1 + i)/

√
2,

ω3
8 = cos(6π/8) + i sin(6π/8) = (−1 + i)/

√
2,

ω5
8 = cos(10π/8) + i sin(10π/8) = (−1− i)/

√
2,

ω7
8 = cos(14π/8) + i sin(14π/8) = (1− i)/

√
2.

By grouping these into complex conjugate pairs, we obtain

Φ8(x) = (x− (1 + i)/
√

2)(x− (1− i)/
√

2)(x− (−1 + i)/
√

2)(x− (−1− i)/
√

2)

= (x2 −
√

2x+ 1)(x2 +
√

2x+ 1)

= x4 + 1.

Alternatively, one could prove that the primitive 8th roots of +1 are all of the 4th roots of
−1. Then it is clear that Φ8(x) = x4 − (−1).

(b): One can check by hand that

Φ1(x)Φ2(x)Φ4(x)Φ8(x) = (x− 1)(x+ 1)(x2 + 1)(x4 + 1) = x8 − 1.



Alternatively, one can use the fact that ωab = e2πia/b = e2πic/d = ωcd for all fractions satisfying
a/b = c/d. By reducing the fractions k/8 (1 ≤ k ≤ 8) into lowest terms, we observe that the
8th roots of unity can be partitioned into the sets of primitive dth roots of unity for each
divisor d = {1, 2, 4, 8} of 8:

{ω1
8, ω

2
8, ω

3
8, ω

4
8, ω

5
8, ω

6
8, ω

7
8, ω

8
8}

= {ω1
8, ω

1
4, ω

3
8, ω

1
2, ω

5
8, ω

3
4, ω

7
8, ω

1
1}

= {ω1
1} ∪ {ω1

2} ∪ {ω1
4, ω

3
4} ∪ {ω1

8, ω
3
8, ω

5
8, ω

7
8}.

Then we obtain the factorization x8 − 1 = Φ1(x)Φ2(x)Φ4(x)Φ8(x) without even knowing the
coefficients of the cyclotomic polynomials. Here is a picture:

Discussion: This same argument can be used to prove the identity

xn − 1 =
∏
d|n

Φd(x)

for any n ≥ 1. I might ask you to prove this on a future homework. I might also ask you to
use this identity to prove by induction that Φn(x) always has integer coefficients.


