Problem 1. Difference of $n \mathbf{t h}$ Powers. Let $n \geq 1$ be a positive integer and let $\omega=e^{2 \pi i / n}$. Prove that for all complex numbers $\alpha, \beta \in \mathbb{C}$ we have

$$
\alpha^{n}-\beta^{n}=(\alpha-\beta)(\alpha-\omega \beta)\left(\alpha-\omega^{2} \beta\right) \cdots\left(\alpha-\omega^{n-1} \beta\right) .
$$

Problem 2. Integral Domains. We say that a (commutative) ring R is an integral domain if for all $a, b \in R$ we have

$$
a b=0 \quad \Rightarrow \quad a=0 \text { or } b=0 .
$$

The prototypical example is the ring of integers \mathbb{Z}, hence the name.
(a) Prove that a field is an integral domain.
(b) If R is integral domain, prove that $R[x]$ is integral domain. [Hint: Leading coefficients.]
(c) If $a, b, c \in R$ and $a \neq 0$ in an integral domain, prove that $a b=a c$ implies $b=c$.
(d) Consider any $a, b \in R$ with $a \mid b$ and $b \mid a$. In this case, use part (c) to show that $a=u b$ for some invertible element $u \in R$ (called a unit).

Problem 3. Bézout's Identity. Let $a, b \in \mathbb{Z}$ (not both zero) and consider the set

$$
S=\{a x+b y: x, y \in \mathbb{Z}, a x+b y \geq 1\} .
$$

By well-ordering this set contains a smallest elemement; call it $d \in S$.
(a) Prove that $d \mid a$ and $d \mid b$. [Hint: There exist $q, r \in \mathbb{Z}$ with $a=d q+r$ and $0 \leq r<d$. Show that $r \geq 1$ leads to a contradiction.]
(b) If $e \mid a$ and $e \mid b$ for some $e \in \mathbb{Z}$, show that $e \mid d$.

It follows that d is the greatest common divisor of a and b. In particular, we have shown that there exist some (non-unique) integers $x, y \in \mathbb{Z}$ satisfying $\operatorname{gcd}(a, b)=a x+b y$.

Problem 4. De Moivre's Formula.

(a) Use de Moivre's formula to express $\cos (2 \theta)$ as a polynomial in $\cos \theta$.
(b) Solve this polynomial to obtain a formula for $\cos \theta$ in terms of $\cos (2 \theta)$.
(c) Use your formula from (b) to obtain exact values for $\cos \left(\pi / 2^{n}\right)$ when $n=1,2,3,4$.

Problem 5. Quadratic Formula Again.

(a) Find the two complex square roots of i. [Hint: Express i in polar form.]
(b) Use part (a) and the quadratic formula to solve the following equation for x :

$$
x^{2}+(2 i) x+(-1-i)=0 .
$$

Problem 6. Cyclotomic Polynomials. We say that $\zeta \in \mathbb{C}$ is a primitive nth root of unity if $\zeta^{n}=1$ and if $\zeta^{k} \neq 1$ for all $1<k<n$. We define the nth cyclotomic polynomial as follows:

$$
\Phi_{n}(x):=\prod(x-\zeta)
$$

where ζ runs over the primitive nth roots of unity. By convention we say $\Phi_{1}(x)=x-1$.
(a) Compute the polynomials $\Phi_{2}(x), \Phi_{4}(x)$ and $\Phi_{8}(x)$. [Hint: Problem 5(a).]
(b) Prove that the polynomial $x^{8}-1 \in \mathbb{Q}[x]$ can be factored as follows:

$$
x^{8}-1=\Phi_{1}(x) \Phi_{2}(x) \Phi_{4}(x) \Phi_{8}(x) .
$$

