Problem 1. One Real Root. Consider a polynomial $x^{3}+p x+q$ with real coefficients $p, q \in \mathbb{R}$ satisfying $p>0$. We will show that this polynomial has exactly one real root.
(a) From the Intermediate Value Theorem we know that there exists a real root $f(r)=0$. In this case use long division to show that

$$
f(x)=(x-r)\left(x^{2}+r x+p+r^{2}\right) .
$$

(b) Show that $x^{2}+r x+p+r^{2}$ has no real roots. [Hint: Consider the discriminant.]
(a): Applying the long division algorithm gives

$$
x-r \begin{array}{rrrr}
& x^{2} & +r x & +\left(p+r^{2}\right) \\
& \begin{array}{lrrr}
x^{3} & & +p x & +q \\
x^{3} & -r x^{2} & & +q \\
& & r x^{2} & +p x \\
& r x^{2} & -r^{2} x & +q \\
& & \left(p+r^{2}\right) x & +q \\
& & \left(p+r^{2}\right) x & -\left(p+r^{2}\right) r \\
& & & q+\left(p+r^{2}\right) r
\end{array}
\end{array}
$$

And we observe that the remainder is zero: $r\left(r^{2}+p\right)+q=r^{3}+r p+q=f(r)=0$.
(b): For any real number $s \in \mathbb{R}$ satisfying $f(s)=0$ and $s \neq r$ we have

$$
(s-r)\left(s^{2}+r s+p+r^{2}\right)=f(s)=0
$$

which implies that $s^{2}+r s+p+r^{2}=0$, hence s is a real root of $x^{2}+r x+p+r^{2}=0$. However, since $p>0$ we observe that this quadratic equation has no real roots because it has a negative discriminant:

$$
r^{2}-4\left(p+r^{2}\right)=-3 r^{2}-4 p<0
$$

Problem 2. Coefficients Versus Roots. Let \mathbb{F} be a field and suppose that the polynomial $f(x)=x^{3}+a x^{2}+b x+c \in \mathbb{F}[x]$ has three roots $r, s, t \in \mathbb{F}$.
(a) Find formulas for a, b, c in terms of r, s, t.
(b) Find a formula for $r^{2}+s^{2}+t^{2}$ in terms of a, b, c. [Hint: Square $r+s+t$.]
(a): If $r, s, t \in \mathbb{F}$ are distinct roots of $x^{3}+a x^{2}+b x+c \in \mathbb{F}[x]$ then we may use Descartes' Factor Theorem to obtain

$$
\begin{aligned}
x^{3}+a x^{2}+b x+c & =(x-r)(x-s)(x-t) \\
& =x^{3}-(r+s+t) x^{2}+(r s+r t+s t) x-r s t .
\end{aligned}
$$

Then comparing coefficients gives

$$
\left\{\begin{array}{l}
a=-(r+s+t) \\
b=r s+r t+s t \\
c=-r s t
\end{array}\right.
$$

(b): It follows that

$$
\begin{aligned}
(r+s+t)^{2} & =r^{2}+s^{2}+t^{2}+2 r s+2 r t+2 s t \\
(-a)^{2} & =r^{2}+s^{2}+t^{2}+2(r s+r t+s t) \\
a^{2} & =r^{2}+s^{2}+t^{2}+2 b \\
a^{2}-2 b & =r^{2}+s^{2}+t^{2} .
\end{aligned}
$$

Problem 3. Uniqueness of Roots. Let $f(x) \in \mathbb{F}[x]$ be a polynomial with coefficients in a field \mathbb{F}. Suppose that there exist numbers $a_{1}, \ldots, a_{r} \in \mathbb{F}$ and $b_{1}, \ldots, b_{s} \in \mathbb{F}$ such that

$$
f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{r}\right)=\left(x-b_{1}\right)\left(x-b_{2}\right) \cdots\left(x-b_{s}\right) .
$$

(a) Prove that $r=s$. [Hint: Degree.]
(b) Prove that the roots can be re-indexed so that $a_{i}=b_{i}$ for all i. [Hint: Consider $f\left(a_{1}\right)$.]
(a): Comparing degrees gives

$$
\begin{aligned}
\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{r}\right) & =\left(x-b_{1}\right)\left(x-b_{2}\right) \cdots\left(x-b_{s}\right) \\
\operatorname{deg}\left(\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{r}\right)\right) & =\operatorname{deg}\left(\left(x-b_{1}\right)\left(x-b_{2}\right) \cdots\left(x-b_{s}\right)\right) \\
\operatorname{deg}\left(x-a_{1}\right)+\cdots+\operatorname{deg}\left(x-a_{r}\right) & =\operatorname{deg}\left(x-b_{1}\right)+\cdots+\operatorname{deg}\left(x-b_{s}\right) \\
\underbrace{1+\cdots+1}_{r \text { times }} & =\underbrace{1+\cdots+1}_{s \text { times }} \\
r & =s .
\end{aligned}
$$

(b): Substituting $x=a_{1}$ gives

$$
\begin{aligned}
\left(a_{1}-a_{1}\right)\left(a_{1}-a_{2}\right) \cdots\left(a_{1}-a_{r}\right) & =\left(a_{1}-b_{1}\right)\left(a_{1}-b_{2}\right) \cdots\left(a_{1}-b_{s}\right) \\
0 \cdot\left(a_{1}-a_{2}\right) \cdots\left(a_{1}-a_{r}\right) & =\left(a_{1}-b_{1}\right)\left(a_{1}-b_{2}\right) \cdots\left(a_{1}-b_{s}\right) \\
0 & =\left(a_{1}-b_{1}\right)\left(a_{1}-b_{2}\right) \cdots\left(a_{1}-b_{s}\right) .
\end{aligned}
$$

It follows that $a_{1}-b_{i}=0$ for some i, and after re-indexing we may assume that $a_{1}=b_{1}$. Now we may cancel the factor $x-a_{1}$ from both sides to obtain

$$
\begin{aligned}
\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{r}\right) & =\left(x-a_{1}\right)\left(x-b_{2}\right) \cdots\left(x-b_{s}\right) \\
\left(x-a_{2}\right) \cdots\left(x-a_{r}\right) & =\left(x-b_{2}\right) \cdots\left(x-b_{s}\right),
\end{aligned}
$$

and the result follows by induction.
Problem 4. Cardano's Formula. Cardano's formula applied to $x^{3}+6 x-20=0$ gives

$$
x=\sqrt[3]{10+\sqrt{108}}+\sqrt[3]{10-\sqrt{108}}
$$

Observe that $\sqrt{108}=6 \sqrt{3}$. Try to find some integers $a, b, c, d \in \mathbb{Z}$ such that

$$
(a+b \sqrt{3})^{3}=10+\sqrt{108} \quad \text { and } \quad(c+d \sqrt{3})^{3}=10-\sqrt{108}
$$

Then use your answer to prove that

$$
\sqrt[3]{10+\sqrt{108}}+\sqrt[3]{10-\sqrt{108}}=2
$$

First we observe that

$$
\begin{aligned}
(a+b \sqrt{3})^{3} & =a^{3}+3 a^{2}(b \sqrt{3})+3 a(b \sqrt{3})^{2}+(b \sqrt{3})^{3} \\
& =a^{3}+3 a^{2} b \sqrt{3}+9 a b^{2}+3 b^{3} \sqrt{3} \\
& =\left(a^{3}+9 a b^{2}\right)+\left(3 a^{2} b+3 b^{3}\right) \sqrt{3} \\
& =a\left(a^{2}+9 b^{2}\right)+3 b\left(a^{2}+b^{2}\right) \sqrt{3}
\end{aligned}
$$

We would like to find integers $a, b \in \mathbb{Z}$ such that $a\left(a^{2}+9 b^{2}\right)=10$ and $3 b\left(a^{2}+b^{2}\right)=6$. After a bit of trial and error, we see that the only solution is $a=1$ and $b=1$. In other words, the unique real cube root of $10+\sqrt{108}=10+6 \sqrt{3}$ is equal to $1+\sqrt{3}$. A similar argument shows that $1-\sqrt{3}$ is the unique real cube root of $10-\sqrt{108}$. Thus we conclude that

$$
\sqrt[3]{10+\sqrt{108}}+\sqrt[3]{10-\sqrt{108}}=(1+\sqrt{3})+(1-\sqrt{3})=2
$$

Problem 5. A Prime Cubic Polynomial. We will give a rigorous proof that the polynomial $f(x)=x^{3}+x+1$ is a prime element of the ring $\mathbb{Q}[x]$.
(a) Suppose that we have $f(a / b)=0$ for some integers $a, b \in \mathbb{Z}$. By reducing a / b to lowest terms we may assume that a and b have no common prime factors. In this case show that $a= \pm 1$ and $b= \pm 1$. [Hint: If $p \mid a$ for some prime $p \in \mathbb{Z}$, then $p \mid b^{3}$ and hence $p \mid b$.]
(b) Use part (a) to show that $f(x)$ has no roots in \mathbb{Q}.
(c) Show that every polynomial in $\mathbb{Q}[x]$ of degree 1 has a root in \mathbb{Q}.
(d) If $f(x) \in \mathbb{Q}[x]$ is not prime then we can write $f(x)=g(x) h(x)$ for some polynomials $g(x), h(x) \in \mathbb{Q}[x]$ with $\operatorname{deg}(g)>0$ and $\operatorname{deg}(h)>0$. Show that one of $g(x)$ or $h(x)$ must have degree 1 and use this to obtain a contradiction.
(a): Substituting $x=a / b$ and clearing denominators gives

$$
\begin{aligned}
f(a / b) & =0 \\
(a / b)^{3}+(a / b)+1 & =0 \\
a^{3} / b^{3}+a / b+1 & =0 \\
a^{3}+a b^{2}+b^{3} & =0
\end{aligned}
$$

Suppose that a has a prime factor $p \mid a$. Since $b^{3}=a\left(-a^{2}-b^{2}\right)$ we conclude that $p \mid b^{3}$ and then from Euclid's Lemma we obtain $p \mid b$. But this contradicts the fact that a and b have no common prime factors. Therefore a has no prime factor; in other words, we must have $a= \pm 1$. Similarly, if b has a prime factor $q \mid b$ then we observe that $q \mid a^{3}$ and hence $q \mid a$. This contradiction shows that b had no prime factors and hence $b= \pm 1$.
(b): If $a / b \in \mathbb{Q}$ is a rational root of $f(x)$ (in lowest terms) then from part (a) we know that $a= \pm 1$ and $b= \pm 1$, hence $a / b= \pm 1$. But we observe that $f(1)=3 \neq 0$ and $f(-1)=-1 \neq 0$. Therefore $f(x)$ has no rational root.
(c): Let $g(x) \in \mathbb{Q}[x]$ have degree 1 , say $g(x)=(a / b) x+(c / d)$ for some $a, b, c, d \in \mathbb{Z}$. Then we observe that

$$
g\left(\frac{-b c}{a d}\right)=\frac{a}{b}\left(-\frac{b c}{a d}\right)+\frac{c}{d}=-\frac{c}{d}+\frac{c}{d}=0
$$

Hence $g(x)$ has the rational root $-(b c) /(a d) \in \mathbb{Q}$.
(d): Assume for contradiction that $f(x)=x^{3}+x+1 \in \mathbb{Q}[x]$ is not prime in $\mathbb{Q}[x]$. By definition this means we can write $f(x)=g(x) h(x)$ for some polynomials $g(x), h(x) \in \mathbb{Q}[x]$ with $\operatorname{deg}(g) \geq 1$ and $\operatorname{deg}(h) \geq 1$. Comparing degrees gives

$$
\begin{aligned}
f(x) & =g(x) h(x) \\
\operatorname{deg}(f) & =\operatorname{deg}(g h) \\
3 & =\operatorname{deg}(g)+\operatorname{deg}(h),
\end{aligned}
$$

therefore we must have $\operatorname{deg}(g)=1$ and $\operatorname{deg}(h)=2$ or $\operatorname{deg}(g)=2$ and $\operatorname{deg}(h)=1$. Without loss of generality let us assume that $\operatorname{deg}(g)=1$. Then from part (c) there exists rational number $\alpha \in \mathbb{Q}$ satiasfying $g(\alpha)=0$. Finally, by substituting $x=\alpha$ we obtain

$$
f(\alpha)=g(\alpha) h(\alpha)=0 \cdot h(\alpha)=0,
$$

which contradicts the fact that $f(x)$ has no rational root.
Discussion: Part (a) was the trickiest problem on this homework assignment. We can generalize this argument as follows. Consider any polynomial $f(x)=c_{0}+c_{1} x+\cdots+c_{n} x^{n} \in \mathbb{Z}[x]$ with integer coefficients and suppose that we have $f(a / b)=0$ for some fraction $a / b \in \mathbb{Q}$ written in lowest terms. By substituting and clearing denominators we obtain the following equation of integers:

$$
c_{0} b^{n}+c_{1} a b^{n-1}+\cdots+c_{n-1} a^{n-1} b+c_{n} a^{n}=0 .
$$

It follows from this that $a \mid c_{0} b^{n}$ and $b \mid c_{n} a^{n}$. Finally, since a and b have no common factors, one can show using Euclid's Lemma (proof omitted) that we must have $a \mid c_{0}$ and $b \mid c_{n}$. This argument is called the rational root test. It restricts the possible rational roots of $f(x)$ to a finite set, which can be checked by hand.

Problem 6. Complex Conjugation. Let i be an abstract symbol satisfying $i^{2}=-1$ and consider the ring of complex numbers:

$$
\mathbb{C}=\{a+b i: a, b \in \mathbb{R}\} .
$$

We define complex conjugation $*: \mathbb{C} \rightarrow \mathbb{C}$ by the following formula:

$$
(a+b i)^{*}:=a-b i .
$$

(a) For all $\alpha \in \mathbb{C}$ show $\alpha^{*}=\alpha$ if and only if $\alpha \in \mathbb{R}$.
(b) For all $\alpha, \beta \in \mathbb{C}$ show that $(\alpha+\beta)^{*}=\alpha^{*}+\beta^{*}$ and $(\alpha \beta)^{*}=\alpha^{*} \beta^{*}$.
(c) For all real polynomials $f(x) \in \mathbb{R}[x]$ and complex numbers $\alpha \in \mathbb{C}$ show that

$$
f(\alpha)^{*}=f\left(\alpha^{*}\right) .
$$

(d) Use part (c) to show that complex roots of real polynomials come in conjugate pairs. It follows that any real polynomial has an even number of complex roots.

Before we begin, let me make three important observations:

- The abstract symbol i (whatever it is) is not a real number. If it were, then from trichotomy we would have $i<0$ or $i=0$ or $i>0$. But $i<0$ implies $0<i^{2}=-1$, $0=i$ implies $0=i^{2}=-1$, and $0<i$ implies $0<i^{2}=-1$, all of which are false.
- For all real numbers $a, b, c, d \in \mathbb{R}$ I claim that

$$
a+b i=c+d i \quad \Leftrightarrow \quad a=c \text { and } b=d .
$$

Indeed, if $a=c$ and $b=d$ then $a+b i=c+d i$. Conversely, suppose that $a+b i=c+d i$. If $b \neq d$ then we conclude that $i=(a-c) /(d-b)$ is real, which contradicts the previous remark. Therefore we must have $b=d$ and hence $a=c$.

- We view \mathbb{R} as a subset of \mathbb{C} by identifying the real number $a \in \mathbb{R}$ with the complex number $a+0 i \in \mathbb{C}$. It follows that $a+b i \in \mathbb{R}$ if and only if $b=0$.
(a): Consider any $\alpha=a+b i \in \mathbb{C}$. If α is real then $b=0$ and hence

$$
\alpha^{*}=(a+0 i)^{*}=a-0 i=a+0 i=\alpha .
$$

Conversely, suppose that $\alpha^{*}=\alpha$, so that $a+b i=a-b i$. Subtracting a on both sides gives $b i=-b i$, which implies that $2 b i=0$ and hence $b=0{ }^{1}$ It follows that $\alpha=a+0 i$ is real.
(b): Let $\alpha=a+b i$ and $\beta=c+d i$. Then we have

$$
\begin{aligned}
\alpha^{*}+\beta^{*} & =(a-b i)+(c-d i) \\
& =(a+c)-(b+d) i \\
& =((a+c)+(b+d) i)^{*} \\
& =(\alpha+\beta)^{*}
\end{aligned}
$$

and

$$
\begin{aligned}
\alpha^{*} \beta^{*} & =(a-b i)(c-d i) \\
& =a c-a d i-b c i+b d i^{2} \\
& =a c-a d i-b c i-b d \\
& =(a c-b d)-(a d+b c) i \\
& =((a c-b d)+(a d+b c) i)^{*} \\
& =((a+b i)(c+d i))^{*} \\
& =(\alpha \beta)^{*} .
\end{aligned}
$$

(c): Consider any polynomial $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in \mathbb{R}[x]$ with real coefficients and let $\alpha \in \mathbb{C}$ be any complex number. Then combining parts (a) and (b) gives

$$
\begin{align*}
f(\alpha)^{*} & =\left(a_{0}+a_{1} \alpha+\cdots+a_{n} \alpha^{n}\right)^{*} \\
& =a_{0}^{*}+a_{1}^{*} \alpha^{*}+\cdots+a_{n}^{*}\left(\alpha^{*}\right)^{n} \tag{b}\\
& =a_{0}+a_{1} \alpha^{*}+\cdots+a_{n}\left(\alpha^{*}\right)^{n} \tag{a}\\
& =f\left(\alpha^{*}\right) .
\end{align*}
$$

(d): We conclude from part (c) that

$$
f(\alpha)=0 \quad \Leftrightarrow \quad f(\alpha)^{*}=0 \quad \Leftrightarrow \quad f\left(\alpha^{*}\right)=0
$$

In other words, $\alpha \in \mathbb{C}$ is a root of $f(x) \in \mathbb{R}[x]$ if and only if $\alpha^{*} \in \mathbb{C}$ is a root of $f(x)$. This tells us that the non-real complex roots of $f(x)$ come in pairs. Hence there must be an even number of non-real complex roots (possibly zero).

Discussion: This problem was intended to get you thinking about complex numbers. In the next chapter I will give a thorough treatement, after which this problem will make a lot more sense.

[^0]
[^0]: ${ }^{1}$ From the above remarks, if $0+2 b i=0+0 i$ then $2 b=0$, which then implies that $b=0$.

