
Math 461 Spring 2020
Homework 2 Drew Armstrong

Problem 1. One Real Root. Consider a polynomial x3 + px + q with real coefficients
p, q ∈ R satisfying p > 0. We will show that this polynomial has exactly one real root.

(a) From the Intermediate Value Theorem we know that there exists a real root f(r) = 0.
In this case use long division to show that

f(x) = (x− r)(x2 + rx+ p+ r2).

(b) Show that x2 + rx+ p+ r2 has no real roots. [Hint: Consider the discriminant.]

(a): Applying the long division algorithm gives

x2 +rx +(p+ r2)
x− r x3 +px +q

x3 −rx2
rx2 +px +q
rx2 −r2x

(p+ r2)x +q
(p+ r2)x −(p+ r2)r

q + (p+ r2)r

And we observe that the remainder is zero: r(r2 + p) + q = r3 + rp+ q = f(r) = 0.

(b): For any real number s ∈ R satisfying f(s) = 0 and s 6= r we have

(s− r)(s2 + rs+ p+ r2) = f(s) = 0,

which implies that s2 + rs+p+ r2 = 0, hence s is a real root of x2 + rx+p+ r2 = 0. However,
since p > 0 we observe that this quadratic equation has no real roots because it has a negative
discriminant:

r2 − 4(p+ r2) = −3r2 − 4p < 0.

Problem 2. Coefficients Versus Roots. Let F be a field and suppose that the polynomial
f(x) = x3 + ax2 + bx+ c ∈ F[x] has three roots r, s, t ∈ F.

(a) Find formulas for a, b, c in terms of r, s, t.
(b) Find a formula for r2 + s2 + t2 in terms of a, b, c. [Hint: Square r + s+ t.]

(a): If r, s, t ∈ F are distinct roots of x3 + ax2 + bx + c ∈ F[x] then we may use Descartes’
Factor Theorem to obtain

x3 + ax2 + bx+ c = (x− r)(x− s)(x− t)
= x3 − (r + s+ t)x2 + (rs+ rt+ st)x− rst.

Then comparing coefficients gives  a = −(r + s+ t),
b = rs+ rt+ st,
c = −rst.



(b): It follows that

(r + s+ t)2 = r2 + s2 + t2 + 2rs+ 2rt+ 2st

(−a)2 = r2 + s2 + t2 + 2(rs+ rt+ st)

a2 = r2 + s2 + t2 + 2b

a2 − 2b = r2 + s2 + t2.

Problem 3. Uniqueness of Roots. Let f(x) ∈ F[x] be a polynomial with coefficients in a
field F. Suppose that there exist numbers a1, . . . , ar ∈ F and b1, . . . , bs ∈ F such that

f(x) = (x− a1)(x− a2) · · · (x− ar) = (x− b1)(x− b2) · · · (x− bs).

(a) Prove that r = s. [Hint: Degree.]
(b) Prove that the roots can be re-indexed so that ai = bi for all i. [Hint: Consider f(a1).]

(a): Comparing degrees gives

(x− a1)(x− a2) · · · (x− ar) = (x− b1)(x− b2) · · · (x− bs)
deg ((x− a1)(x− a2) · · · (x− ar)) = deg ((x− b1)(x− b2) · · · (x− bs))

deg(x− a1) + · · ·+ deg(x− ar) = deg(x− b1) + · · ·+ deg(x− bs)
1 + · · ·+ 1︸ ︷︷ ︸

r times

= 1 + · · ·+ 1︸ ︷︷ ︸
s times

r = s.

(b): Substituting x = a1 gives

(a1 − a1)(a1 − a2) · · · (a1 − ar) = (a1 − b1)(a1 − b2) · · · (a1 − bs)
0 · (a1 − a2) · · · (a1 − ar) = (a1 − b1)(a1 − b2) · · · (a1 − bs)

0 = (a1 − b1)(a1 − b2) · · · (a1 − bs).

It follows that a1− bi = 0 for some i, and after re-indexing we may assume that a1 = b1. Now
we may cancel the factor x− a1 from both sides to obtain

�����(x− a1)(x− a2) · · · (x− ar) = �����(x− a1)(x− b2) · · · (x− bs)
(x− a2) · · · (x− ar) = (x− b2) · · · (x− bs),

and the result follows by induction.

Problem 4. Cardano’s Formula. Cardano’s formula applied to x3 + 6x− 20 = 0 gives

x =
3

√
10 +

√
108 +

3

√
10−

√
108.

Observe that
√

108 = 6
√

3. Try to find some integers a, b, c, d ∈ Z such that

(a+ b
√

3)3 = 10 +
√

108 and (c+ d
√

3)3 = 10−
√

108.

Then use your answer to prove that

3

√
10 +

√
108 +

3

√
10−

√
108 = 2.



First we observe that

(a+ b
√

3)3 = a3 + 3a2(b
√

3) + 3a(b
√

3)2 + (b
√

3)3

= a3 + 3a2b
√

3 + 9ab2 + 3b3
√

3

= (a3 + 9ab2) + (3a2b+ 3b3)
√

3

= a(a2 + 9b2) + 3b(a2 + b2)
√

3.

We would like to find integers a, b ∈ Z such that a(a2 + 9b2) = 10 and 3b(a2 + b2) = 6. After
a bit of trial and error, we see that the only solution is a = 1 and b = 1. In other words, the
unique real cube root of 10 +

√
108 = 10 + 6

√
3 is equal to 1 +

√
3. A similar argument shows

that 1−
√

3 is the unique real cube root of 10−
√

108. Thus we conclude that

3

√
10 +

√
108 +

3

√
10−

√
108 = (1 +

√
3) + (1−

√
3) = 2.

Problem 5. A Prime Cubic Polynomial. We will give a rigorous proof that the polyno-
mial f(x) = x3 + x+ 1 is a prime element of the ring Q[x].

(a) Suppose that we have f(a/b) = 0 for some integers a, b ∈ Z. By reducing a/b to lowest
terms we may assume that a and b have no common prime factors. In this case show
that a = ±1 and b = ±1. [Hint: If p|a for some prime p ∈ Z, then p|b3 and hence p|b.]

(b) Use part (a) to show that f(x) has no roots in Q.
(c) Show that every polynomial in Q[x] of degree 1 has a root in Q.
(d) If f(x) ∈ Q[x] is not prime then we can write f(x) = g(x)h(x) for some polynomials

g(x), h(x) ∈ Q[x] with deg(g) > 0 and deg(h) > 0. Show that one of g(x) or h(x) must
have degree 1 and use this to obtain a contradiction.

(a): Substituting x = a/b and clearing denominators gives

f(a/b) = 0

(a/b)3 + (a/b) + 1 = 0

a3/b3 + a/b+ 1 = 0

a3 + ab2 + b3 = 0.

Suppose that a has a prime factor p|a. Since b3 = a(−a2 − b2) we conclude that p|b3 and
then from Euclid’s Lemma we obtain p|b. But this contradicts the fact that a and b have
no common prime factors. Therefore a has no prime factor; in other words, we must have
a = ±1. Similarly, if b has a prime factor q|b then we observe that q|a3 and hence q|a. This
contradiction shows that b had no prime factors and hence b = ±1.

(b): If a/b ∈ Q is a rational root of f(x) (in lowest terms) then from part (a) we know that
a = ±1 and b = ±1, hence a/b = ±1. But we observe that f(1) = 3 6= 0 and f(−1) = −1 6= 0.
Therefore f(x) has no rational root.

(c): Let g(x) ∈ Q[x] have degree 1, say g(x) = (a/b)x+ (c/d) for some a, b, c, d ∈ Z. Then we
observe that

g

(
−bc
ad

)
=
a

b

(
− bc
ad

)
+
c

d
= − c

d
+
c

d
= 0.

Hence g(x) has the rational root −(bc)/(ad) ∈ Q.



(d): Assume for contradiction that f(x) = x3 + x + 1 ∈ Q[x] is not prime in Q[x]. By
definition this means we can write f(x) = g(x)h(x) for some polynomials g(x), h(x) ∈ Q[x]
with deg(g) ≥ 1 and deg(h) ≥ 1. Comparing degrees gives

f(x) = g(x)h(x)

deg(f) = deg(gh)

3 = deg(g) + deg(h),

therefore we must have deg(g) = 1 and deg(h) = 2 or deg(g) = 2 and deg(h) = 1. Without
loss of generality let us assume that deg(g) = 1. Then from part (c) there exists rational
number α ∈ Q satiasfying g(α) = 0. Finally, by substituting x = α we obtain

f(α) = g(α)h(α) = 0 · h(α) = 0,

which contradicts the fact that f(x) has no rational root. �

Discussion: Part (a) was the trickiest problem on this homework assignment. We can generalize
this argument as follows. Consider any polynomial f(x) = c0+c1x+· · ·+cnxn ∈ Z[x] with integer
coefficients and suppose that we have f(a/b) = 0 for some fraction a/b ∈ Q written in lowest
terms. By substituting and clearing denominators we obtain the following equation of integers:

c0b
n + c1ab

n−1 + · · ·+ cn−1a
n−1b+ cna

n = 0.

It follows from this that a|c0bn and b|cnan. Finally, since a and b have no common factors, one
can show using Euclid’s Lemma (proof omitted) that we must have a|c0 and b|cn. This argument
is called the rational root test. It restricts the possible rational roots of f(x) to a finite set, which
can be checked by hand.

Problem 6. Complex Conjugation. Let i be an abstract symbol satisfying i2 = −1 and
consider the ring of complex numbers:

C = {a+ bi : a, b ∈ R}.
We define complex conjugation ∗ : C→ C by the following formula:

(a+ bi)∗ := a− bi.
(a) For all α ∈ C show α∗ = α if and only if α ∈ R.
(b) For all α, β ∈ C show that (α+ β)∗ = α∗ + β∗ and (αβ)∗ = α∗β∗.
(c) For all real polynomials f(x) ∈ R[x] and complex numbers α ∈ C show that

f(α)∗ = f(α∗).

(d) Use part (c) to show that complex roots of real polynomials come in conjugate pairs.
It follows that any real polynomial has an even number of complex roots.

Before we begin, let me make three important observations:

• The abstract symbol i (whatever it is) is not a real number. If it were, then from
trichotomy we would have i < 0 or i = 0 or i > 0. But i < 0 implies 0 < i2 = −1,
0 = i implies 0 = i2 = −1, and 0 < i implies 0 < i2 = −1, all of which are false.
• For all real numbers a, b, c, d ∈ R I claim that

a+ bi = c+ di ⇔ a = c and b = d.

Indeed, if a = c and b = d then a+bi = c+di. Conversely, suppose that a+bi = c+di.
If b 6= d then we conclude that i = (a−c)/(d−b) is real, which contradicts the previous
remark. Therefore we must have b = d and hence a = c.



• We view R as a subset of C by identifying the real number a ∈ R with the complex
number a+ 0i ∈ C. It follows that a+ bi ∈ R if and only if b = 0.

(a): Consider any α = a+ bi ∈ C. If α is real then b = 0 and hence

α∗ = (a+ 0i)∗ = a− 0i = a+ 0i = α.

Conversely, suppose that α∗ = α, so that a + bi = a − bi. Subtracting a on both sides gives
bi = −bi, which implies that 2bi = 0 and hence b = 0.1 It follows that α = a+ 0i is real.

(b): Let α = a+ bi and β = c+ di. Then we have

α∗ + β∗ = (a− bi) + (c− di)
= (a+ c)− (b+ d)i

= ((a+ c) + (b+ d)i)∗

= (α+ β)∗

and

α∗β∗ = (a− bi)(c− di)
= ac− adi− bci+ bdi2

= ac− adi− bci− bd
= (ac− bd)− (ad+ bc)i

= ((ac− bd) + (ad+ bc)i)∗

= ((a+ bi)(c+ di))∗

= (αβ)∗ .

(c): Consider any polynomial f(x) = a0 + a1x + · · · + anx
n ∈ R[x] with real coefficients and

let α ∈ C be any complex number. Then combining parts (a) and (b) gives

f(α)∗ = (a0 + a1α+ · · ·+ anα
n)∗

= a∗0 + a∗1α
∗ + · · ·+ a∗n(α∗)n (b)

= a0 + a1α
∗ + · · ·+ an(α∗)n (a)

= f(α∗).

(d): We conclude from part (c) that

f(α) = 0 ⇔ f(α)∗ = 0 ⇔ f(α∗) = 0.

In other words, α ∈ C is a root of f(x) ∈ R[x] if and only if α∗ ∈ C is a root of f(x). This
tells us that the non-real complex roots of f(x) come in pairs. Hence there must be an even
number of non-real complex roots (possibly zero).

Discussion: This problem was intended to get you thinking about complex numbers. In the next
chapter I will give a thorough treatement, after which this problem will make a lot more sense.

1From the above remarks, if 0 + 2bi = 0 + 0i then 2b = 0, which then implies that b = 0.


