Problem 1. One Real Root. Consider a polynomial $x^{3}+p x+q$ with real coefficients $p, q \in \mathbb{R}$ satisfying $p>0$. We will show that this polynomial has exactly one real root.
(a) From the Intermediate Value Theorem we know that there exists a real root $f(r)=0$.

In this case use long division to show that

$$
f(x)=(x-r)\left(x^{2}+r x+p+r^{2}\right) .
$$

(b) Show that $x^{2}+r x+p+r^{2}$ has no real roots. [Hint: Consider the discriminant.]

Problem 2. Coefficients Versus Roots. Let \mathbb{F} be a field and suppose that the polynomial $f(x)=x^{3}+a x^{2}+b x+c \in \mathbb{F}[x]$ has three roots $r, s, t \in \mathbb{F}$.
(a) Find formulas for a, b, c in terms of r, s, t.
(b) Find a formula for $r^{2}+s^{2}+t^{2}$ in terms of a, b, c. [Hint: Square $r+s+t$.]

Problem 3. Uniqueness of Roots. Let $f(x) \in \mathbb{F}[x]$ be a polynomial with coefficients in a field \mathbb{F}. Suppose that there exist numbers $a_{1}, \ldots, a_{r} \in \mathbb{F}$ and $b_{1}, \ldots, b_{s} \in \mathbb{F}$ such that

$$
f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{r}\right)=\left(x-b_{1}\right)\left(x-b_{2}\right) \cdots\left(x-b_{s}\right) .
$$

(a) Prove that $r=s$. [Hint: Degree.]
(b) Prove that the roots can be re-indexed so that $a_{i}=b_{i}$ for all i. [Hint: Consider $f\left(a_{i}\right)$.]

Problem 4. Cardano's Formula. Cardano's formula applied to $x^{3}+6 x-20=0$ gives

$$
x=\sqrt[3]{10+\sqrt{108}}+\sqrt[3]{10-\sqrt{108}}
$$

Observe that $\sqrt{108}=6 \sqrt{3}$. Try to find some integers $a, b, c, d \in \mathbb{Z}$ such that

$$
(a+b \sqrt{3})^{3}=10+\sqrt{108} \quad \text { and } \quad(c+d \sqrt{3})^{3}=10-\sqrt{108}
$$

Then use your answer to prove that

$$
\sqrt[3]{10+\sqrt{108}}+\sqrt[3]{10-\sqrt{108}}=2
$$

Problem 5. A Prime Cubic Polynomial. We will give a rigorous proof that the polynomial $f(x)=x^{3}+x+1$ is a prime element of the ring $\mathbb{Q}[x]$.
(a) Suppose that we have $f(a / b)=0$ for some integers $a, b \in \mathbb{Z}$. By reducing a / b to lowest terms we may assume that a and b have no common prime factors. In this case show that $a= \pm 1$ and $b= \pm 1$. [Hint: If $p \mid a$ for some prime $p \in \mathbb{Z}$, then $p \mid b^{3}$ and hence $p \mid b$.]
(b) Use part (a) to show that $f(x)$ has no roots in \mathbb{Q}.
(c) Show that every polynomial in $\mathbb{Q}[x]$ of degree 1 has a root in \mathbb{Q}.
(d) If $f(x) \in \mathbb{Q}[x]$ is not prime then we can write $f(x)=g(x) h(x)$ for some polynomials $g(x), h(x) \in \mathbb{Q}[x]$ with $\operatorname{deg}(g)>0$ and $\operatorname{deg}(h)>0$. Show that one of $g(x)$ or $h(x)$ must have degree 1 and use this to obtain a contradiction.

Problem 6. Complex Conjugation. Consider the field of real numbers:

$$
\mathbb{C}=\{a+b \sqrt{-1}: a, b \in \mathbb{R}\} .
$$

We define complex conjugation $*: \mathbb{C} \rightarrow \mathbb{C}$ by the following formula:

$$
(a+b \sqrt{-1})^{*}:=a-b \sqrt{-1} .
$$

(a) For all $\alpha \in \mathbb{C}$ show $\alpha^{*}=\alpha$ if and only if $\alpha \in \mathbb{R}$.
(b) For all $\alpha, \beta \in \mathbb{C}$ show that $(\alpha+\beta)^{*}=\alpha^{*}+\beta^{*}$ and $(\alpha \beta)^{*}=\alpha^{*} \beta^{*}$.
(c) For all real polynomials $f(x) \in \mathbb{R}[x]$ and complex numbers $\alpha \in \mathbb{C}$ show that $f(\alpha)^{*}=f\left(\alpha^{*}\right)$.
(d) Use part (c) to show that complex roots of real polynomials come in conjugate pairs. It follows that any real polynomial has an even number of complex roots.

