Problem 1. One Real Root. Consider a polynomial $x^3 + px + q$ with real coefficients $p, q \in \mathbb{R}$ satisfying p > 0. We will show that this polynomial has exactly one real root.

(a) From the Intermediate Value Theorem we know that there exists a real root f(r) = 0. In this case use long division to show that

$$f(x) = (x - r)(x^{2} + rx + p + r^{2}).$$

(b) Show that $x^2 + rx + p + r^2$ has no real roots. [Hint: Consider the discriminant.]

Problem 2. Coefficients Versus Roots. Let \mathbb{F} be a field and suppose that the polynomial $f(x) = x^3 + ax^2 + bx + c \in \mathbb{F}[x]$ has three roots $r, s, t \in \mathbb{F}$.

- (a) Find formulas for a, b, c in terms of r, s, t.
- (b) Find a formula for $r^2 + s^2 + t^2$ in terms of a, b, c. [Hint: Square r + s + t.]

Problem 3. Uniqueness of Roots. Let $f(x) \in \mathbb{F}[x]$ be a polynomial with coefficients in a field \mathbb{F} . Suppose that there exist numbers $a_1, \ldots, a_r \in \mathbb{F}$ and $b_1, \ldots, b_s \in \mathbb{F}$ such that

$$f(x) = (x - a_1)(x - a_2) \cdots (x - a_r) = (x - b_1)(x - b_2) \cdots (x - b_s)$$

- (a) Prove that r = s. [Hint: Degree.]
- (b) Prove that the roots can be re-indexed so that $a_i = b_i$ for all *i*. [Hint: Consider $f(a_i)$.]

Problem 4. Cardano's Formula. Cardano's formula applied to $x^3 + 6x - 20 = 0$ gives

$$x = \sqrt[3]{10 + \sqrt{108}} + \sqrt[3]{10 - \sqrt{108}}.$$

Observe that $\sqrt{108} = 6\sqrt{3}$. Try to find some integers $a, b, c, d \in \mathbb{Z}$ such that

$$(a + b\sqrt{3})^3 = 10 + \sqrt{108}$$
 and $(c + d\sqrt{3})^3 = 10 - \sqrt{108}$

Then use your answer to prove that

$$\sqrt[3]{10 + \sqrt{108}} + \sqrt[3]{10 - \sqrt{108}} = 2.$$

Problem 5. A Prime Cubic Polynomial. We will give a rigorous proof that the polynomial $f(x) = x^3 + x + 1$ is a prime element of the ring $\mathbb{Q}[x]$.

- (a) Suppose that we have f(a/b) = 0 for some integers $a, b \in \mathbb{Z}$. By reducing a/b to lowest terms we may assume that a and b have no common prime factors. In this case show that $a = \pm 1$ and $b = \pm 1$. [Hint: If p|a for some prime $p \in \mathbb{Z}$, then $p|b^3$ and hence p|b.]
- (b) Use part (a) to show that f(x) has no roots in \mathbb{Q} .
- (c) Show that every polynomial in $\mathbb{Q}[x]$ of degree 1 has a root in \mathbb{Q} .
- (d) If $f(x) \in \mathbb{Q}[x]$ is **not** prime then we can write f(x) = g(x)h(x) for some polynomials $g(x), h(x) \in \mathbb{Q}[x]$ with $\deg(g) > 0$ and $\deg(h) > 0$. Show that one of g(x) or h(x) must have degree 1 and use this to obtain a contradiction.

Problem 6. Complex Conjugation. Consider the field of real numbers:

$$\mathbb{C} = \{a + b\sqrt{-1} : a, b \in \mathbb{R}\}.$$

We define *complex conjugation* $* : \mathbb{C} \to \mathbb{C}$ by the following formula:

$$(a + b\sqrt{-1})^* := a - b\sqrt{-1}.$$

- (a) For all $\alpha \in \mathbb{C}$ show $\alpha^* = \alpha$ if and only if $\alpha \in \mathbb{R}$.
- (b) For all $\alpha, \beta \in \mathbb{C}$ show that $(\alpha + \beta)^* = \alpha^* + \beta^*$ and $(\alpha\beta)^* = \alpha^*\beta^*$.
- (c) For all real polynomials $f(x) \in \mathbb{R}[x]$ and complex numbers $\alpha \in \mathbb{C}$ show that

$$f(\alpha)^* = f(\alpha^*).$$

(d) Use part (c) to show that complex roots of real polynomials come in conjugate pairs. It follows that any real polynomial has an **even number** of complex roots.