There are 4 pages, each with 6 points, for a total of 24 points. If copying is detected then the exam will receive zero points. No electronic devices are allowed.

Problem 1. One can check that $x=2$ is a root of $f(x)=x^{3}-4 x^{2}+6 x-4 \in \mathbb{Q}[x]$.
(a) Find a polynomial $g(x) \in \mathbb{Q}[x]$ such that $f(x)=(x-2) g(x)$.

$$
x-2) \begin{array}{r}
x^{2}-2 x+2 \\
\begin{array}{c}
x^{3}-4 x^{2}+6 x-4 \\
-x^{3}+2 x^{2} \\
\hline-2 x^{2}+6 x \\
\frac{2 x^{2}-4 x}{2 x}-4 \\
\frac{-2 x+4}{0}
\end{array}
\end{array}
$$

(b) Use the quadratic formula to find all roots of $g(x)$.

From (a) we have $g(x)=x^{2}-2 x+2$. The quadratic formula gives

$$
x=\frac{2 \pm \sqrt{-4}}{2}=\frac{2 \pm 2 i}{2}=1 \pm i .
$$

(c) Use your result to express $f(x)$ in the form $(x-r)(x-s)(x-t)$ for some $r, s, t \in \mathbb{C}$.

$$
f(x)=(x-2)\left(x^{2}-2 x+2\right)=(x-2)(x-1-i)(x-1+i)
$$

Problem 2. Let \mathbb{F} be a field. Suppose that the polynomial $x^{2}+a x+b \in \mathbb{F}[x]$ can be factored as $f(x)=(x-r)(x-s)$ for some numbers $r, s \in \mathbb{F}$.
(a) Expand the right hand side to find expressions for a, b in terms of r, s.

We have $x^{2}+a x+b=(x-r)(x-s)=x^{2}-(r+s) x+r s$. Comparing coefficients gives

$$
\left\{\begin{aligned}
a & =-(r+s) \\
b & =r s
\end{aligned}\right.
$$

(b) Use (a) to find an expression for $(r-s)^{2}$ in terms of a, b.

First observe that $a^{2}=(r+s)^{2}=r^{2}+2 r s+s^{2}$. Then

$$
\begin{aligned}
(r-s)^{2} & =r^{2}-2 r s+s^{2} \\
& =r^{2}+2 r s+s^{2}-4 r s \\
& =(r+s)^{2}-4 r s \\
& =a^{2}-4 b .
\end{aligned}
$$

(c) Assuing that $r \neq 0$ and $s \neq 0$, use (a) to find an expression for $1 / r^{2}+1 / s^{2}$ in terms of a, b. [Hint: First find a common denominator.]

First observe that $r^{2}+s^{2}=(r+s)^{2}-2 r s=a^{2}-2 b$. Then

$$
\begin{aligned}
1 / r^{2}+1 / s^{2} & =\left(s^{2}+r^{2}\right) /\left(r^{2} s^{2}\right) \\
& =\left(a^{2}-2 b\right) / b^{2}
\end{aligned}
$$

Problem 3. Consider the ring of polynomials $\mathbb{R}[x]$ with coefficients in \mathbb{R}.
(a) State the definition of a prime polynomial in $\mathbb{R}[x]$.

We say that $p(x) \in \mathbb{R}[x]$ is prime when:

- $\operatorname{deg}(p) \geq 1$,
- $p(x)=f(x) g(x)$ implies $\operatorname{deg}(f)=0$ or $\operatorname{deg}(g)=0$.
(b) Prove that any polynomial $f(x) \in \mathbb{R}[x]$ of degree 1 has a root in \mathbb{R}.

If $\operatorname{deg}(f)=1$ then we can write $f(x)=a x+b$ for some $a, b \in \mathbb{R}$ with $a \neq 0$. Then we observe that $-b / a \in \mathbb{R}$ is a root:

$$
f(-b / a)=a(-b / a)+b=-b+b=0 .
$$

(c) You may assume that the polynomial $p(x)=x^{2}+1 \in \mathbb{R}[x]$ has no root in \mathbb{R}. Use this information to prove that $p(x)$ is prime in $\mathbb{R}[x]$.

Assume for contradiction that $p(x)$ is not prime. By definition this means that we can write $p(x)=f(x) g(x)$ for some polynomials $f(x), g(x) \in \mathbb{R}[x]$ with $\operatorname{deg}(f) \geq 1$ and $\operatorname{deg}(g)=1$. Since

$$
2=\operatorname{deg}(p)=\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g),
$$

this implies that $\operatorname{deg}(f)=\operatorname{deg}(g)=1$. In particular, from part (b) we know that $f(x)$ has a root, say $r \in \mathbb{R}$. But then we have

$$
p(r)=f(r) g(r)=0 \cdot g(r)=0,
$$

contradicting the fact that $p(x)$ has no root in \mathbb{R}.

Problem 4. Let $f(x) \in \mathbb{R}[x]$ have real coefficients and let $i \in \mathbb{C}$ be the imaginary unit.
(a) If $f(x)=\left(x^{2}+1\right) g(x)$ for some $g(x) \in \mathbb{R}[x]$ show that $f(i)=0$.

$$
f(i)=\left(i^{2}+1\right) g(i)=(-1+1) g(i)=0 \cdot g(i)=0
$$

(b) If $r(x) \in \mathbb{R}[x]$ has degree 1 show that $r(i) \neq 0$. [Hint: You can assume that $i \notin \mathbb{R}$.]

If $\operatorname{deg}(r)=1$ then we can write $r(x)=a x+b$ for some $a, b \in \mathbb{R}$ with $a \neq 0$. If $r(i)=0$ then we obtain the contradiction

$$
\begin{aligned}
r(i) & =0 \\
a i+b & =0 \\
i & =-b / a \in \mathbb{R} .
\end{aligned}
$$

(c) If $f(i)=0$ show that $f(x)=\left(x^{2}+1\right) g(x)$ for some $g(x) \in \mathbb{R}[x]$. [Hint: Divide $f(x)$ by $x^{2}+1$ in the ring $\mathbb{R}[x]$. Show that the remainder is the zero polynomial.]

Suppose that $f(i)=0$ for some $f(x) \in \mathbb{R}[x]$. Divide $f(x)$ by $x^{2}+1$ to obtain polynomials $q(x), r(x) \in \mathbb{R}[x]$ satisfying

$$
\left\{\begin{array}{l}
f(x)=\left(x^{2}+1\right) q(x)+r(x) \\
\operatorname{deg}(r)<2
\end{array}\right.
$$

Since $f(i)=0$ it follows that

$$
0=f(i)=\left(i^{2}+1\right) q(i)+r(i)=0 g(i)+r(i)=r(i) .
$$

I claim that this implies $r(x)=0(x)$, and hence $f(x)=\left(x^{2}+1\right) q(x)$ as desired. To prove this, suppose for contradiction that $r(x) \neq 0(x)$. Then there are two cases:

- If $\operatorname{deg}(r)=0$ then $r(x)=c \in \mathbb{F}$ is a nonzero constant, hence $r(i)=c \neq 0$.
- If $\operatorname{deg}(r)=1$ then from part (b) we also have $r(i) \neq 0$.

In either case we obtain a contradiction.

Remark: This is an extension of Descartes' Factor Theorem. The original version says that for any polynomial $g(x) \in \mathbb{C}[x]$ we have

$$
g(i)=0 \text { in the field } \mathbb{C} \quad \Leftrightarrow \quad(x-i) \mid g(x) \text { in the ring } \mathbb{C}[x] .
$$

Our new version says that for any polynomial $f(x) \in \mathbb{R}[x]$ we have

$$
f(i)=0 \text { in the field } \mathbb{C} \Leftrightarrow\left(x^{2}+1\right) \mid f(x) \text { in the ring } \mathbb{R}[x] .
$$

More generally, for any pair of fields $\mathbb{F} \subseteq \mathbb{E}$ and for any element $\alpha \in \mathbb{E}$, we will see that there exists some polynomial $m_{\alpha}(x) \in \mathbb{F}[x]$ (which is either prime or zero) such that for all $f(x) \in \mathbb{F}[x]$ we have

$$
f(\alpha)=0 \text { in the field } \mathbb{E} \Leftrightarrow m_{\alpha}(x) \mid f(x) \text { in the ring } \mathbb{F}[x] .
$$

We call $m_{\alpha}(x)$ the minimal polynomial for α over \mathbb{F}. Thus $x^{2}+1$ is the minimal polynomial for i over \mathbb{R} (also over \mathbb{Q}).

