There are three main topics for the first exam:

- (1) The Quadratic and Cubic Formulas
- (2) Basic properties of the rings \mathbb{Z} and $\mathbb{F}[x]$
- (3) Basic properties of the field \mathbb{C}

(1) The Quadratic and Cubic Formulas

- On the exam you may always use modern notation and modern number systems. This means that negative numbers and complex numbers are allowed.
- Quadratic Formula. The equation $x^2 + ax + b = 0$ has discriminant $\Delta = a^2 4b$. The roots are given by

$$x = (-a \pm \delta)/2,$$

where δ is any number satisfying $\delta^2 = \Delta$.

- If a, b are real then $\Delta > 0$ means two real roots, $\Delta = 0$ means one real root (actually, two equal real roots) and $\Delta < 0$ means two non-real complex roots (which necessarily form a complex conjugate pair).
- If $x^2 + ax + b = (x r)(x s)$ then by comparing coefficients we obtain

$$\begin{cases} a = -(r+s), \\ b = rs, \end{cases}$$

and from this one can check that $\Delta = a^2 - 4b = (r - s)^2$.

- Any cubic equation $x^3 + ax^2 + bx + c = 0$ with real coefficients $a, b, c \in \mathbb{R}$ satisfying $a \neq 0$ has at least one real root because of the Intermediate Value Theorem.
- Cubic Formula. The equation $x^3 + ax^2 + bx + c = 0$ can be reduced to the form $y^3 + py + q = 0$ by setting x = y a/3. Let $\Delta = (q/2)^2 + (p/3)^3$ be the discriminant and let δ be any number satisfying $\delta^2 = \Delta$. Then Cardano's Formula tells us that

$$y = \sqrt[3]{-q/2 + \delta} + \sqrt[3]{-q/2 - \delta}.$$

Most examples are too tricky for the exam. One relatively easy case is $x^3 - 6x - 6 = 0$.

(2) Basic Properties of the Rings \mathbb{Z} and $\mathbb{F}[x]$

• You do not need to memorize the axioms of rings and fields.

• Let \mathbb{F} be a field. A *polynomial* is formal expression $f(x) = \sum_{k \ge 0} a_k x^k$, where only finitely many of the coefficients $a_k \in \mathbb{F}$ are nonzero. If a_n is the highest nonzero coefficient then we say $\deg(f) = n$. If there are no nonzero coefficients then we say $\deg(f) = -\infty$. We add and multiply polynomials as follows:

$$\sum_{k \ge 0} a_k x^k + \sum_{k \ge 0} b_k x^k := \sum_{k \ge 0} (a_k + b_k) x^k$$
$$\left(\sum_{i \ge 0} a_i x^k\right) \left(\sum_{j \ge 0} b_j x^j\right) := \sum_{k \ge 0} \left(\sum_{i=0}^k a_i b_{k-i}\right) x^k$$

These operations make $\mathbb{F}[x]$ into a ring with "zero element" $0 + 0x + 0x^2 + \cdots$ and "one element" $1 + 0x + 0x^2 + \cdots$. We can view $\mathbb{F} \subseteq \mathbb{F}[x]$ as a subring by writing

$$a = a + 0x + 0x^2 + \cdots$$
 for all $a \in \mathbb{F}$.

- The Division Theorem. For any integers $a, b \in \mathbb{Z}$ with $b \neq 0$ there exist integers $q, r \in \mathbb{Z}$ such that a = qb + r and |r| < |b|. For any polynomials $f(x), g(x) \in \mathbb{F}[x]$ with g(x) there exist polynomials $q(x), r(x) \in \mathbb{F}[x]$ such that f(x) = q(x)g(x) + r(x) and $\deg(r) < \deg(g)$.
- Descartes' Factor Theorem. For any polynomial $f(x) \in \mathbb{F}[x]$ and constant $a \in \mathbb{F}$, the remainder of f(x) when divided by x a is the constant $f(a) \in \mathbb{F}$ (i.e., the evaluation of f(x) | x = a). It follows that

$$f(a) = 0$$
 in the field $\mathbb{F} \iff (x-a)|f(x)$ in the ring $\mathbb{F}[x]$.

- As a corollary of Descartes, any polynomial $f(x) \in \mathbb{F}[x]$ of degree $n \ge 0$ has at most n roots in \mathbb{F} . Proof: If f(a) = 0 then f(x) = (x a)g(x) where g(x) has degree n 1. By induction we can assume that g(x) has at most n 1 roots in \mathbb{F} . But if f(b) = 0 and $b \ne a$ then substituting x = b gives 0 = (b a)g(b) and hence g(b) = 0.
- Euclid's Lemma. We say that $p \in \mathbb{Z}$ is prime if $|p| \ge 2$ and p = ab implies |a| = 1 or |b| = 1. We say that $p(x) \in \mathbb{F}[x]$ is prime if $\deg(p) \ge 1$ and p(x) = f(x)g(x) implies $\deg(f) = 0$ or $\deg(g) = 0$. Then Euclid's Lemma says that

$$\begin{aligned} p|ab \Rightarrow p|a \text{ or } p|b & \text{ in } \mathbb{Z} \\ p(x)|f(x)g(x) \Rightarrow p(x)|f(x) \text{ or } p(x)|g(x) & \text{ in } \mathbb{F}[x] \end{aligned}$$

You do not need to prove this.

• Unique Prime Factorization. Example: Let $p_1, p_2, q_1, q_2 \in \mathbb{Z}$ be prime with $p_1p_2 = q_1q_2$. Since $p_1|q_1q_2$ and p_1 is prime we must have $p_1|q_1$ or $p_2|q_2$. Let's say $p_1|q_1$. Then since q_1 is prime we must have $p_1 = \pm q_1$, hence $p_1p_1 = \pm p_1q_2$. Finally, by canceling p_1 from both sides we obtain $p_2 = \pm q_2$.

• Example of a Prime Polynomial. Let $d \in \mathbb{Z}$ be a non-square integer. Then I claim that $x^2 - d$ is a prime element of $\mathbb{Q}[x]$. Proof: If $x^2 - d$ is not prime then we have $x^2 - d = f(x)g(x)$ with $\deg(f) = 1$ and $\deg(g) = 1$. But then f(x) has a root in \mathbb{Q} , hence $x^2 - d$ has a root in \mathbb{Q} . But I claim that $x^2 - d$ has no roots in \mathbb{Q} . Indeed, if $(a/b)^2 - d = 0$ for some $a, b \in \mathbb{Z}$ with $b \neq 0$. Then $a^2 = db^2$. Now use Euclid's Lemma in \mathbb{Z} to get a contradiction.

(3) Basic Properties of the Field \mathbb{C}

• A complex number if a formal expression a + bi with $a, b \in \mathbb{R}$. We add and multiply complex numbers as follows:

$$(a+bi) + (c+di) := (a+c) + (b+d)i$$

 $(a+bi)(c+di) := (ac-bd) + (ad+bc)i.$

These operations make \mathbb{C} into a ring with "zero element" 0+0i and "one element" 1+0i. In fact, \mathbb{C} is a field, since for any $a+bi \neq 0+0i$ we have

$$(a+bi)^{-1} = \left(\frac{a}{a^2+b^2}\right) + \left(\frac{-b}{a^2+b^2}\right)i.$$

We can view $\mathbb{R} \subseteq \mathbb{C}$ as a subfield by writing

$$a = a + 0i$$
 for all $a \in \mathbb{R}$.

- For all $a + bi \in \mathbb{C}$ we define $(a + bi)^* := a bi$. One can check that $(\alpha + \beta)^* = \alpha^* + \beta^*$ and $(\alpha\beta)^* = \alpha^*\beta^*$ for all $\alpha, \beta \in \mathbb{C}$ and $a^* = a$ for all $a \in \mathbb{R}$. And by combining the facts we obtain $f(\alpha)^* = f(\alpha^*)$ for all $f(x) \in \mathbb{R}[x]$ and $\alpha \in \mathbb{C}$. It follows that non-real complex roots of real polynomials come in conjugate pairs.
- Application: Every polynomial with real coefficients has an even number of non-real complex roots (possibly zero).