There are three main topics for the first exam:
(1) The Quadratic and Cubic Formulas
(2) Basic properties of the rings \mathbb{Z} and $\mathbb{F}[x]$
(3) Basic properties of the field \mathbb{C}

(1) The Quadratic and Cubic Formulas

- On the exam you may always use modern notation and modern number systems. This means that negative numbers and complex numbers are allowed.
- Quadratic Formula. The equation $x^{2}+a x+b=0$ has discriminant $\Delta=a^{2}-4 b$. The roots are given by

$$
x=(-a \pm \delta) / 2
$$

where δ is any number satisfying $\delta^{2}=\Delta$.

- If a, b are real then $\Delta>0$ means two real roots, $\Delta=0$ means one real root (actually, two equal real roots) and $\Delta<0$ means two non-real complex roots (which necessarily form a complex conjugate pair).
- If $x^{2}+a x+b=(x-r)(x-s)$ then by comparing coefficients we obtain

$$
\left\{\begin{aligned}
a & =-(r+s) \\
b & =r s
\end{aligned}\right.
$$

and from this one can check that $\Delta=a^{2}-4 b=(r-s)^{2}$.

- Any cubic equation $x^{3}+a x^{2}+b x+c=0$ with real coefficients $a, b, c \in \mathbb{R}$ satisfying $a \neq 0$ has at least one real root because of the Intermediate Value Theorem.
- Cubic Formula. The equation $x^{3}+a x^{2}+b x+c=0$ can be reduced to the form $y^{3}+p y+q=0$ by setting $x=y-a / 3$. Let $\Delta=(q / 2)^{2}+(p / 3)^{3}$ be the discriminant and let δ be any number satisfying $\delta^{2}=\Delta$. Then Cardano's Formula tells us that

$$
y=\sqrt[3]{-q / 2+\delta}+\sqrt[3]{-q / 2-\delta}
$$

Most examples are too tricky for the exam. One relatively easy case is $x^{3}-6 x-6=0$.

(2) Basic Properties of the Rings \mathbb{Z} and $\mathbb{F}[x]$

- You do not need to memorize the axioms of rings and fields.
- Let \mathbb{F} be a field. A polynomial is formal expression $f(x)=\sum_{k \geqslant 0} a_{k} x^{k}$, where only finitely many of the coefficients $a_{k} \in \mathbb{F}$ are nonzero. If a_{n} is the highest nonzero coefficient then we say $\operatorname{deg}(f)=n$. If there are no nonzero coefficients then we say $\operatorname{deg}(f)=-\infty$. We add and multiply polynomials as follows:

$$
\begin{aligned}
\sum_{k \geqslant 0} a_{k} x^{k}+\sum_{k \geqslant 0} b_{k} x^{k} & :=\sum_{k \geqslant 0}\left(a_{k}+b_{k}\right) x^{k} \\
\left(\sum_{i \geqslant 0} a_{i} x^{k}\right)\left(\sum_{j \geqslant 0} b_{j} x^{j}\right) & :=\sum_{k \geqslant 0}\left(\sum_{i=0}^{k} a_{i} b_{k-i}\right) x^{k} .
\end{aligned}
$$

These operations make $\mathbb{F}[x]$ into a ring with "zero element" $0+0 x+0 x^{2}+\cdots$ and "one element" $1+0 x+0 x^{2}+\cdots$. We can view $\mathbb{F} \subseteq \mathbb{F}[x]$ as a subring by writing

$$
a=a+0 x+0 x^{2}+\cdots \quad \text { for all } a \in \mathbb{F} .
$$

- The Division Theorem. For any integers $a, b \in \mathbb{Z}$ with $b \neq 0$ there exist integers $q, r \in \mathbb{Z}$ such that $a=q b+r$ and $|r|<|b|$. For any polynomials $f(x), g(x) \in \mathbb{F}[x]$ with $g(x)$ there exist polynomials $q(x), r(x) \in \mathbb{F}[x]$ such that $f(x)=q(x) g(x)+r(x)$ and $\operatorname{deg}(r)<\operatorname{deg}(g)$.
- Descartes' Factor Theorem. For any polynomial $f(x) \in \mathbb{F}[x]$ and constant $a \in \mathbb{F}$, the remainder of $f(x)$ when divided by $x-a$ is the constant $f(a) \in \mathbb{F}$ (i.e., the evaluation of $f(x) x=a)$. It follows that

$$
f(a)=0 \text { in the field } \mathbb{F} \Leftrightarrow(x-a) \mid f(x) \text { in the ring } \mathbb{F}[x] .
$$

- As a corollary of Descartes, any polynomial $f(x) \in \mathbb{F}[x]$ of degree $n \geqslant 0$ has at most n roots in \mathbb{F}. Proof: If $f(a)=0$ then $f(x)=(x-a) g(x)$ where $g(x)$ has degree $n-1$. By induction we can assume that $g(x)$ has at most $n-1$ roots in \mathbb{F}. But if $f(b)=0$ and $b \neq a$ then substituting $x=b$ gives $0=(b-a) g(b)$ and hence $g(b)=0$.
- Euclid's Lemma. We say that $p \in \mathbb{Z}$ is prime if $|p| \geqslant 2$ and $p=a b$ implies $|a|=1$ or $|b|=1$. We say that $p(x) \in \mathbb{F}[x]$ is prime if $\operatorname{deg}(p) \geqslant 1$ and $p(x)=f(x) g(x)$ implies $\operatorname{deg}(f)=0$ or $\operatorname{deg}(g)=0$. Then Euclid's Lemma says that

$$
\begin{aligned}
p \mid a b & \Rightarrow p \mid a \text { or } p \mid b & \text { in } \mathbb{Z}, \\
p(x) \mid f(x) g(x) & \Rightarrow p(x) \mid f(x) \text { or } p(x) \mid g(x) & \text { in } \mathbb{F}[x] .
\end{aligned}
$$

You do not need to prove this.

- Unique Prime Factorization. Example: Let $p_{1}, p_{2}, q_{1}, q_{2} \in \mathbb{Z}$ be prime with $p_{1} p_{2}=$ $q_{1} q_{2}$. Since $p_{1} \mid q_{1} q_{2}$ and p_{1} is prime we must have $p_{1} \mid q_{1}$ or $p_{2} \mid q_{2}$. Let's say $p_{1} \mid q_{1}$. Then since q_{1} is prime we must have $p_{1}= \pm q_{1}$, hence $p_{1} p_{1}= \pm p_{1} q_{2}$. Finally, by canceling p_{1} from both sides we obtain $p_{2}= \pm q_{2}$.
- Example of a Prime Polynomial. Let $d \in \mathbb{Z}$ be a non-square integer. Then I claim that $x^{2}-d$ is a prime element of $\mathbb{Q}[x]$. Proof: If $x^{2}-d$ is not prime then we have $x^{2}-d=f(x) g(x)$ with $\operatorname{deg}(f)=1$ and $\operatorname{deg}(g)=1$. But then $f(x)$ has a root in \mathbb{Q}, hence $x^{2}-d$ has a root in \mathbb{Q}. But I claim that $x^{2}-d$ has no roots in \mathbb{Q}. Indeed, if $(a / b)^{2}-d=0$ for some $a, b \in \mathbb{Z}$ with $b \neq 0$. Then $a^{2}=d b^{2}$. Now use Euclid's Lemma in \mathbb{Z} to get a contradiction.

(3) Basic Properties of the Field \mathbb{C}

- A complex number if a formal expression $a+b i$ with $a, b \in \mathbb{R}$. We add and multiply complex numbers as follows:

$$
\begin{aligned}
(a+b i)+(c+d i) & :=(a+c)+(b+d) i \\
(a+b i)(c+d i) & :=(a c-b d)+(a d+b c) i .
\end{aligned}
$$

These operations make \mathbb{C} into a ring with "zero element" $0+0 i$ and "one element" $1+0 i$. In fact, \mathbb{C} is a field, since for any $a+b i \neq 0+0 i$ we have

$$
(a+b i)^{-1}=\left(\frac{a}{a^{2}+b^{2}}\right)+\left(\frac{-b}{a^{2}+b^{2}}\right) i .
$$

We can view $\mathbb{R} \subseteq \mathbb{C}$ as a subfield by writing

$$
a=a+0 i \quad \text { for all } a \in \mathbb{R} .
$$

- For all $a+b i \in \mathbb{C}$ we define $(a+b i)^{*}:=a-b i$. One can check that $(\alpha+\beta)^{*}=\alpha^{*}+\beta^{*}$ and $(\alpha \beta)^{*}=\alpha^{*} \beta^{*}$ for all $\alpha, \beta \in \mathbb{C}$ and $a^{*}=a$ for all $a \in \mathbb{R}$. And by combining the facts we obtain $f(\alpha)^{*}=f\left(\alpha^{*}\right)$ for all $f(x) \in \mathbb{R}[x]$ and $\alpha \in \mathbb{C}$. It follows that non-real complex roots of real polynomials come in conjugate pairs.
- Application: Every polynomial with real coefficients has an even number of non-real complex roots (possibly zero).

