MTH 461 Spring 2020
Review for Exam 1 Drew Armstrong

There are three main topics for the first exam:

(1)
(2)
3)

The Quadratic and Cubic Formulas
Basic properties of the rings Z and F[z]
Basic properties of the field C

(1) The Quadratic and Cubic Formulas

On the exam you may always use modern notation and modern number systems. This
means that negative numbers and complex numbers are allowed.

Quadratic Formula. The equation 22 + ax 4+ b = 0 has discriminant A = a? — 4b. The
roots are given by
r=(—at/)/2,

where § is any number satisfying 6% = A.

If a,b are real then A > 0 means two real roots, A = 0 means one real root (actually,
two equal real roots) and A < 0 means two non-real complex roots (which necessarily
form a complex conjugate pair).

If 2 + ax + b = (v — r)(x — s) then by comparing coefficients we obtain

{ a =—(r+s),

b =rs,

and from this one can check that A = a? — 4b = (r — s)2.

Any cubic equation 3 + az? + bz + ¢ = 0 with real coefficients a, b, ¢ € R satisfying a # 0
has at least one real root because of the Intermediate Value Theorem.

Cubic Formula. The equation z® 4+ axz? + bz + ¢ = 0 can be reduced to the form
y® +py +q = 0 by setting © = y — a/3. Let A = (¢/2)? + (p/3)? be the discriminant and
let § be any number satisfying 6> = A. Then Cardano’s Formula tells us that

y=1/—a/2+0+/~q/2-0.

Most examples are too tricky for the exam. One relatively easy case is 2 — 6z — 6 = 0.

(2) Basic Properties of the Rings Z and F[z]

You do not need to memorize the axioms of rings and fields.



e Let F be afield. A polynomialis formal expression f(z) = >}, aipx®, where only finitely
many of the coefficients a; € F are nonzero. If a,, is the highest nonzero coefficient then
we say deg(f) = n. If there are no nonzero coefficients then we say deg(f) = —o0. We
add and multiply polynomials as follows:

Z apz’ + Z bpa® = Z (ar + bk)xk

k=0 k=0 k=0

k
<Z aixk> (Z bjarj> = Z ( aibk_i> zk.
i=0 §=0 k=0 \i=0

These operations make F[z] into a ring with “zero element” 0+ 0z 4+ 0x? + - -- and “one
element” 1+ 0x + 022 + ---. We can view F < F[z] as a subring by writing

a=a+0x+02>+--- forallaceT.

e The Division Theorem. For any integers a,b € Z with b # 0 there exist integers
q,r € Z such that a = ¢b + r and |r| < |b|. For any polynomials f(z),g(x) € F[x] with
g(x) there exist polynomials ¢(z),r(z) € F[z] such that f(z) = ¢(z)g(x) + r(z) and
deg(r) < deg(g).

e Descartes’ Factor Theorem. For any polynomial f(x) € F[z] and constant a € F, the
remainder of f(x) when divided by x — a is the constant f(a) € F (i.e., the evaluation of
f(x) x = a). It follows that

f(a) =01in the field F < (z —a)|f(z) in the ring F[z].

e As a corollary of Descartes, any polynomial f(z) € F[x] of degree n = 0 has at most n
roots in F. Proof: If f(a) = 0 then f(x) = (z — a)g(x) where g(z) has degree n — 1. By
induction we can assume that g(x) has at most n — 1 roots in F. But if f(b) = 0 and
b # a then substituting x = b gives 0 = (b — a)g(b) and hence g(b) = 0.

e Euclid’s Lemma. We say that p € Z is prime if |p| = 2 and p = ab implies |a| = 1

or [b| = 1. We say that p(x) € F[z] is prime if deg(p) = 1 and p(z) = f(z)g(x) implies
deg(f) = 0 or deg(g) = 0. Then Euclid’s Lemma says that

plab = pla or plb in Z,
p(@)|f(x)g(z) = p(z)|f(z) or p(z)|g(z) in Flz].

You do not need to prove this.

e Unique Prime Factorization. Example: Let pi,p2,q1,q2 € Z be prime with p1ps =
q1q2. Since pi|gig2 and p; is prime we must have p1|q; or pa|ga. Let’s say pi1]|¢i. Then
since ¢ is prime we must have p; = +q1, hence p1p1 = £pi1¢e. Finally, by canceling p;
from both sides we obtain py = +¢o.



e Example of a Prime Polynomial. Let d € Z be a non-square integer. Then I claim
that 22 — d is a prime element of Q[z]. Proof: If 22 — d is not prime then we have
2?2 —d = f(x)g(z) with deg(f) = 1 and deg(g) = 1. But then f(z) has a root in Q,
hence 22 — d has a root in Q. But I claim that 22 — d has no roots in Q. Indeed, if
(a/b)? — d = 0 for some a,b € Z with b # 0. Then a? = db*>. Now use Euclid’s Lemma
in Z to get a contradiction.

(3) Basic Properties of the Field C
e A complex number if a formal expression a + bi with a,b € R. We add and multiply
complex numbers as follows:
(a+bi)+ (c+di) :=(a+¢)+ (b+d)i
(a + bi)(c+ di) := (ac — bd) + (ad + bc)i.

These operations make C into a ring with “zero element” 0+ 0i and “one element” 1+ 03.
In fact, C is a field, since for any a + bi # 0 4+ 07 we have

N—1 a —b .
(a+bi)" = <a2 n 62> + <a2 n b2> 1.

We can view R € C as a subfield by writing

a=a+0¢ forall aeR.

e For all a + bi € C we define (a + bi)* := a — bi. One can check that (a + §)* = a* + g*
and (af)* = a*p* for all o, 5 € C and a* = a for all a € R. And by combining the facts
we obtain f(a)* = f(a*) for all f(x) € R[z] and a € C. It follows that non-real complex
roots of real polynomials come in conjugate pairs.

e Application: Every polynomial with real coefficients has an even number of non-real
complex roots (possibly zero).



