1. Symmetric Functions. Consider the elementary symmetric functions

$$e_1 = r + s + t$$

$$e_2 = rs + rt + st$$

$$e_3 = rst.$$

They are called elementary because every other symmetric function can be expressed in terms of them. Express the following symmetric functions in terms of e_1, e_2, e_3 .

(a) $r^2 + s^2 + t^2$ (b) $r^3 + s^3 + t^3$ (c) $\frac{1}{r^2} + \frac{1}{s^2} + \frac{1}{t^2}$

For part (a), we note that the leading term of $r^2 + s^2 + t^2$ is r^2 . This matches the leading term of e_1^2 . Subtracting gives

$$(r^{2} + s^{2} + t^{2}) - e_{1}^{2} = (r^{2} + s^{2} + t^{2}) - (r^{2} + s^{2} + t^{2} + 2rs + 2rt + 2st)$$

= -2(rs + rt + st)
= -2e_{2}.

Hence $r^2 + s^2 + t^2 = e_1^2 - 2e_2$.

For part (b), we note that the leading term of $r^3 + s^3 + t^3$ is r^3 , which matches the leading term of $e_1^3 = r^3 + s^3 + t^3 + 3r^2s + 3rs^2 + 3r^2t + 3rt^2 + 3s^2t + 3st^2 + 6rst$. Subtracting gives

$$(r^{3} + s^{3} + t^{3}) - e_{1}^{3} = -3r^{2}s - 3rs^{2} - 3r^{2}t - 3rt^{2} - 3s^{2}t - 3st^{2} - 6rst.$$

Note that the new leading term is $-3r^2s$, which matches the leading term of

$$-3e_1e_2 = -3(r+s+t)(rs+rt+st) = -3r^2s - 3rs^2 - 3r^2t - 3rt^2 - 3s^2t - 3st^2 - 9rst.$$

Subtracting gives

$$(r^3 + s^3 + t^3) - e_1^3 + 3e_1e_2 = 3rst = 3e_3.$$

Hence $r^3 + s^3 + t^3 = e_1^3 - 3e_1e_2 + 3e_3$.

For part (c), note that

$$\frac{1}{r^2} + \frac{1}{s^2} + \frac{1}{t^2} = \frac{r^2 s^2 + r^2 t^2 + s^2 t^2}{r^2 s^2 t^2} = \frac{r^2 s^2 + r^2 t^2 + s^2 t^2}{e_3^2}.$$

Now our goal is to express the numerator in terms of e_1, e_2, e_3 . The leading term of the numerator is r^2s^2 , which matches the leading term of e_2^2 . Subtracting gives

$$(r^{2}s^{2} + r^{2}t^{2} + s^{2}t^{2}) - e_{2}^{2} = (r^{2}s^{2} + r^{2}t^{2} + s^{2}t^{2}) - (r^{2}s^{2} + r^{2}t^{2} + s^{2}t^{2} + 2r^{2}st + 2rs^{2}t + 2rst^{2})$$

= $-2r^{2}st - 2rs^{2}t - 2rst^{2}$.

The new leading term is $-2r^2st$, which matches the leading term of

$$-2e_1e_3 = -2(r+s+t)(rst) = -2r^st - 2rs^2t - 2rst^2$$

Subtracting gives

$$(r^2s^2 + r^2t^2 + s^2t^2) - e_2^2 + 2e_1e_3 = 0.$$

$$\frac{1}{r^2} + \frac{1}{s^2} + \frac{1}{t^2} = \frac{e_2^2 - 2e_1e_3}{e_3^2}.$$

2. Application. Suppose that the polynomial $x^3 + px + q$ has roots r, s, t. Find the polynomial (with leading coefficient 1) whose roots are rs, rt, st. The coefficients must be expressed in terms of p and q. [Hint: The polynomial is (x - rs)(x - rt)(x - st).]

We are given that

$$x^{3} + px + q = (x - r)(x - s)(x - t)$$

= $x^{3} - (r + s + t)x^{2} + (rs + rt + st)x - (rst),$

and hence $e_1 = r + s + t = 0$, $e_2 = rs + rt + st = p$, and $e_3 = rst = -q$. The polynomial we are looking for is

$$\begin{aligned} (x-rs)(x-rt)(x-st) &= x^3 - (rs+rt+st)x^2 + (r^2st+rs^2t+rst^2)x - (r^2s^2t^2) \\ &= x^3 - e_2x^2 + e_1e_3x - e_3^2 \\ &= x^3 - px^2 + 0x - (-q)^2 \\ &= x^3 - px^2 - q^2. \end{aligned}$$

3. Discrete Fourier Transform. Let $\omega = e^{2\pi i/3}$. In class I claimed that

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix}^{-1} = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega^2 & \omega \\ 1 & \omega & \omega^2 \end{pmatrix}.$$

Verify that this is true.

First note that $\omega^3 = 1$, $\omega^4 = \omega$, and $1 + \omega + \omega^2 = 0$. Then we have

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega^2 & \omega \\ 1 & \omega & \omega^2 \end{pmatrix} = \begin{pmatrix} 1+1+1 & 1+\omega^2+\omega & 1+\omega+\omega^2 \\ 1+\omega+\omega^2 & 1+\omega^3+\omega^3 & 1+\omega^2+\omega^4 \\ 1+\omega^2+\omega & 1+\omega^4+\omega^2 & 1+\omega^3+\omega^3 \end{pmatrix} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

This is just what we wanted to show.

4. Example of Lagrange's Method. In this problem we will find the full solution to the cubic equation $x^3 - 6x - 6 = 0$. [Compare to Exam 1 Problem 3.] Let r_1, r_2, r_3 be the three complex solutions and note that $e_1 = r_1 + r_2 + r_3 = 0$, $e_2 = r_1r_2 + r_1r_3 + r_2r_3 = -6$, $e_3 = r_1r_2r_3 = 6$. Let $\omega = e^{2\pi i/3}$, and define

$$s_{1} = r_{1} + r_{2} + r_{3}$$

$$s_{2} = r_{1} + \omega r_{2} + \omega^{2} r_{3}$$

$$s_{3} = r_{1} + \omega^{2} r_{2} + \omega r_{3}$$

(a) We saw in class that $s_2^3 + s_3^3 = 2e_1^3 - 9e_1e_2 + 27e_3 = 162$ and $s_2s_3 = e_1^2 - 3e_2 = 18$. Use this information to compute the values of s_2^3 and s_3^3 .

Hence

(b) Let s_2 and s_3 be the positive real cube roots of the values for s_2^3 and s_3^3 that you computed above (it doesn't matter which values we choose, so we might as well choose the easiest ones). Now use the result from Problem 3 to find explicit formulas for the three roots r_1, r_2, r_3 .

For part (a), we are given that

$$x^{3} - 6x - 6 = (x - r_{1})(x - r_{2})(x - r_{3})$$

= $x^{3} - (r_{1} + r_{2} + r_{3})x^{2} + (r_{1}r_{2} + r_{1}r_{3} + r_{2}r_{3})x - (r_{1}r_{2}r_{3})$
= $x^{3} - e_{1}x^{2} + e_{2}x - e_{3}$,

and hence that $e_1 = 0$, $e_2 = -6$, and $e_3 = 6$. This implies that

$$s_2^3 + s_3^3 = 2e_1^3 - 9e_1e_2 + 27e_3 = 2 \cdot 0^2 - 9 \cdot 0(-6) + 27 \cdot 6 = 162$$

and

$$_{2}s_{3} = e_{1}^{2} - 3e_{2} = 0^{2} - 3(-6) = 18.$$

Now e_2^3 and e_3^3 are the roots of the polynomial

$$(u - s_2^3)(u - s_3^3) = u^2 - (s_2^3 + s_3^3)u + s_2^3 s_3^3$$

= $u^2 - (s_2^3 + s_3^3)u + (s_2 s_3)^3$
= $u^2 - 162u + 18^2$
= $u^2 - 162u + 324$.

Using the quadratic formula gives

$$s_2^3, s_3^3 = \frac{1}{2}(162 \pm \sqrt{162^2 - 4 \cdot 324^2})$$
$$= \frac{1}{2}(162 \pm 54)$$
$$= 54, 108.$$

It doesn't matter which is which, so let's just say $s_2^3 = 54$ and $s_3^3 = 108$.

For part (b) we take the real cube roots to get

$$s_2 = \sqrt[3]{54} = 3 \cdot \sqrt[3]{2}$$
 and $s_3 = \sqrt[3]{108} = 3 \cdot \sqrt[3]{4}$

Finally, we use the result of Problem 3 to compute the roots of $x^3 - 6x - 6$:

$$r_{1} = (s_{1} + s_{2} + s_{3})/3 = \sqrt[3]{2} + \sqrt[3]{4}$$

$$r_{2} = (s_{1} + \omega^{2}s_{2} + \omega s_{3})/3 = \omega^{2} \cdot \sqrt[3]{2} + \omega \cdot \sqrt[3]{4}$$

$$r_{3} = (s_{1} + \omega s_{2} + \omega^{2}s_{3})/3 = \omega \cdot \sqrt[3]{2} + \omega^{2} \cdot \sqrt[3]{4}$$

If you don't believe it, I encourage you to check that these three numbers satisfy the equation $x^3 - 6x - 6 = 0$. Since a polynomial of degree 3 has at most 3 roots, these must be all of them. See the last page of the Course Notes for a picture of these roots in the complex plane.