1. Symmetric Functions. Consider the elementary symmetric functions

$$
\begin{aligned}
& e_{1}=r+s+t \\
& e_{2}=r s+r t+s t \\
& e_{3}=r s t .
\end{aligned}
$$

They are called elementary because every other symmetric function can be expressed in terms of them. Express the following symmetric functions in terms of e_{1}, e_{2}, e_{3}.
(a) $r^{2}+s^{2}+t^{2}$
(b) $r^{3}+s^{2}+t^{3}$
(c) $\frac{1}{r^{2}}+\frac{1}{s^{2}}+\frac{1}{t^{2}}$
2. Application. Suppose that the polynomial $x^{3}+p x+q$ has roots r, s, t. Find the polynomial (with leading coefficient 1) whose roots are $r s, r t, s t$. The coefficients must be expressed in terms of p and q. [Hint: The polynomial is $(x-r s)(x-r t)(x-s t)$.]
3. Discrete Fourier Transform. Let $\omega=2^{2 \pi i / 3}$. In class I claimed that

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \omega & \omega^{2} \\
1 & \omega^{2} & \omega
\end{array}\right)^{-1}=\frac{1}{3}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \omega^{2} & \omega \\
1 & \omega & \omega^{2}
\end{array}\right) .
$$

Verify that this is true.
4. Example of Lagrange's Method. In this problem we will find the full solution to the cubic equation $x^{3}-6 x-6=0$. [Compare to Exam 1 Problem 3.] Let r_{1}, r_{2}, r_{3} be the three complex solutions and note that $e_{1}=r_{1}+r_{2}+r_{3}=0, e_{2}=r_{1} r_{2}+r_{1} r_{3}+r_{2} r_{3}=-6$, $e_{3}=r_{1} r_{2} r_{3}=6$. Let $\omega=e^{2 \pi i / 3}$, and define

$$
\begin{aligned}
& s_{1}=r_{1}+r_{2}+r_{3} \\
& s_{2}=r_{1}+\omega r_{2}+\omega^{2} r_{3} \\
& s_{3}=r_{1}+\omega^{2} r_{2}+\omega r_{3} .
\end{aligned}
$$

(a) We saw in class that $s_{2}^{3}+s_{3}^{3}=2 e_{1}^{3}-9 e_{1} e_{2}+27 e_{3}=162$ and $s_{2} s_{3}=e_{1}^{2}-3 e_{2}=18$. Use this information to compute the values of s_{2}^{3} and s_{3}^{3}.
(b) Let s_{2} and s_{3} be the positive real cube roots of the values for s_{2}^{3} and s_{3}^{3} that you computed above (it doesn't matter which values we choose, so we might as well choose the easiest ones). Now use the result from Problem 3 to find explicit formulas for the three roots r_{1}, r_{2}, r_{3}.

