
Math 461 Spring 2015
Homework 5 Drew Armstrong

1. Equivalence mod n. Let S be a set. For each pair (x, y) ∈ S2 we define x ∼ y to be
either true or false, and we will usually write x ∼ y as shorthand for “x ∼ y is true”. We say
that ∼ is an equivalence relation if

• x ∼ x for all x ∈ S,
• x ∼ y implies y ∼ x for all x, y ∈ S,
• x ∼ y and y ∼ z imply x ∼ z for all x, y, z ∈ S.

Now let n ∈ Z be a nonzero integer. For all x, y ∈ Z we will write x ∼n y to mean that n
divides x− y (i.e., there exists k ∈ Z such that x− y = nk). Prove that ∼n is an equivalence
relation on Z.

Proof. First, consider any integer x ∈ Z. Since x− x = 0 = n · 0 we conclude that x ∼n x.
Second, consider any integers x, y ∈ Z and assume that x ∼n y, i.e., assume that there

exists k ∈ Z such that x − y = nk. Then we have y − x = −(x − y) = −nk = n(−k), and
hence y ∼n x.

Third, consider any integers x, y, z ∈ Z and assume that x ∼n y and y ∼n z. In other
words, assume that there exist k, ` ∈ Z such that x − y = nk and y − z = n`. Adding these
two equations gives

x− z = (x− y) + (y − z) = nk + n` = n(k + `),

hence x ∼n z. We conclude that ∼n is an equivalence relation on Z.
�

2. Primitive Roots of Unity. Consider a positive integer n ∈ Z and let ω = e2πi/n.

(a) Prove that ωk = ω` if and only if k ∼n ` (as in Problem 1).
(b) Given an integer k, let m be the smallest positive integer such that (ωk)m = 1. Show

that m = lcm(k, n)/k.
(c) Prove that ωk is a primitive nth root of 1 if and only if gcd(k, n) = 1. [Hint: gcd(k, n) =

kn/lcm(k, n).]

Proof. For part (a), first recall that eiθ = 1 if and only if θ = 2πm for some m ∈ Z. Then

ωk = ω` ⇐⇒ ωk/ω` = 1

⇐⇒ ωk−` = 1

⇐⇒ e2πi(k−`)/n = 1

⇐⇒ 2π(k − `)/n = 2πm for some m ∈ Z
⇐⇒ k − ` = nm for some m ∈ Z
⇐⇒ k ∼n `.



For part (b), let m be the smallest positive integer such that (ωk)m = 1. Note from
part (a) that

(ωk)m = 1⇐⇒ ωkm = 1

⇐⇒ ωkm = ω0

⇐⇒ km ∼n 0

⇐⇒ km = n` for some ` ∈ Z
⇐⇒ km is a multiple of n

⇐⇒ km is a common multiple of k and n.

The last equivalence is true because km is always a multiple of k so this condition is vacuous.
If m is the smallest positive integer such that km is a common multiple of k and n, then
clearly km must be the least common multiple of k and n. We conclude that

km = lcm(k, n)

m =
1

k
lcm(k, n).

For part (c) we recall (or assume, if we don’t recall) that

nk = lcm(k, n) · gcd(k, n)

nk/lcm(k, n) = gcd(k, n).

Also, we recall the definition of primitive roots: Every nth root of 1 has the form ωk for some
k ∈ Z. We say that ωk is a primitive nth root of 1 if the smallest positive integer m such
that (ωk)m = 1 is m = n. Thus from part (b) we have

ωk is primitive ⇐⇒ n =
1

k
lcm(k, n)

⇐⇒ nk/lcm(k, n) = 1

⇐⇒ gcd(k, n) = 1.

�

3. Euler’s Totient Function. Given a positive integer n ∈ Z we define

ϕ(n) := #{k : 0 ≤ k ≤ n− 1, gcd(k, n) = 1}.

(a) Explain why ϕ(n) is the degree of the cyclotomic polynomial Φn(x) ∈ Z[x].
(b) If p ∈ Z is prime and m is a positive integer, prove that ϕ(pm) = pm − pm−1. [Hint:

The only integers less than pm that are not coprime to pm are the multiples of p. How
many of these are there?]

(c) Prove that for all positive integers n we have

ϕ(n) = n
∏
p|n

p− 1

p
,

where the product is over prime numbers p that divide n. [Hint: You can assume
without proof that for all coprime a, b ∈ Z we have ϕ(ab) = ϕ(a)ϕ(b). Now express n
as a product of primes n = pm1

1 pm2
2 · · · .]

(d) Compute the degree of Φ120(x). Do not compute Φ120(x) itself.



Proof. For part (a), recall that the nth cyclotomic polynomial is given by

Φn(x) =
∏
ζ

(x− ζ)

where ζ runs over the primitive nth roots of unity. From Problem 2(c) we know that the
number of primitive nth roots of unity is ϕ(n). Let ζ1, ζ2, . . . , ζϕ(n) be the primitive roots.
Then by the additivity of degree we have

deg Φn(x) = deg(x− ζ1)(x− ζ2) · · · (x− ζϕ(n))
= deg(x− ζ1) + deg(x− ζ2) + · · ·+ det(x− ζϕ(n))
= 1 + 1 + · · ·+ 1︸ ︷︷ ︸

ϕ(n) times

= ϕ(n).

For part (b), let p be prime and let m be a positive integer. To compute ϕ(pm) we must
count the integers less than pm that are coprime to pm. In this case it turns out to be easier to
count the integers that are not coprime to pm: these are just the multiples of p (any number
that is not a multiple of p is necessarily coprime to pm because p is the only prime factor of
pm). The multiples of p from 1 · p up to pm = pm−1 · p are

1 · p, 2 · p, 3 · p, . . . , (pm−1 − 1) · p, pm−1 · p

and there are pm−1 of these. Subtracting these from the pm numbers 1, 2, 3, . . . , pm gives

ϕ(pm) = pm − pm−1.

For part (c), we can factor n as

n = pm1
1 pm2

2 · · · p
mk
k

where p1, p2, . . . , pk are the distinct prime factors of n. Then we use the fact that ϕ multiplies
over coprime factors [we’ll just assume this fact; if you want to look it up, it’s called the
“Chinese remainder theorem”] we get

ϕ(n) = ϕ(pm1
1 pm2

2 · · · p
mk
k )

= ϕ(pm1
1 )ϕ(pm2

2 ) · · ·ϕ(pmk
k )

= (pm1
1 − p

m1−1
1 )(pm2

2 − p
m2−1
2 ) · · · (pmk

k − p
mk−1
k )

= pm1
1

(
p1 − 1

p1

)
pm2
2

(
p2 − 1

p2

)
· · · pmk

k

(
pk − 1

pk

)
= pm1

1 pm2
2 · · · p

mk
k

(
p1 − 1

p1

)(
p2 − 1

p2

)
· · ·
(
pk − 1

pk

)
= n

(
p1 − 1

p1

)(
p2 − 1

p2

)
· · ·
(
pk − 1

pk

)
= n

k∏
i=1

(
pi − 1

pi

)
which is just what we wanted to show.



For part (d), we will apply the formula from part (c) to compute ϕ(120). Note that 120 =
23 · 3 · 5, so the prime factors are 2, 3, and 5. Then the formula says

ϕ(120) = 120

(
2− 1

2

)(
3− 1

3

)(
5− 1

5

)
= 120

(
1

2

)(
2

3

)(
4

5

)
= 32.

We conclude that there are 32 primitive 120th roots of unity, and hence deg Φ120(x) = 32.
Note that since ϕ(120) = 32 = 25 is a power of 2, the Gauss-Wantzel Theorem tells us that
the regular 120-gon is constructible with straightedge and compass. �

[For the curious, my computer told me that Φ120(x) = x32 + x28 − x20 − x16 − x12 + x4 + 1 and

x120 − 1 = (x− 1)(1 + x4 + x3 + x2 + x)(1 + x2 + x)(1− x+ x3 − x4 + x5 − x7 + x8)(1 + x)

(1− x+ x2 − x3 + x4)(1− x+ x2)(x8 + x7 − x5 − x4 − x3 + x+ 1)(1 + x2)

(x8 − x6 + x4 − x2 + 1)(x4 − x2 + 1)(x16 + x14 − x10 − x8 − x6 + x2 + 1)

(1 + x4)(x16 − x12 + x8 − x4 + 1)(x8 − x4 + 1)(x32 + x28 − x20 − x16 − x12 + x4 + 1).

Obviously I would never compute that by hand.]

4. Fermat Primes. In 1650, Pierre de Fermat conjectured that every number of the form
F (n) = 22

n
+1 is prime. He based this conjecture on the fact that F (0) = 3, F (1) = 5, F (2) =

17, F (3) = 257, F (4) = 65537 are prime. However, Euler showed in 1732 that F (5) is not
prime, and to this day it is not known whether there exist any other “Fermat primes”. D’oh!

(a) If 2a + 1 is a prime number, prove that a must be a power of 2. [Hint: Suppose that
a = bc where b is odd. Factor the polynomial 1− xb and then substitute x = −2c.]

(b) Let p be prime. If ϕ(p) is a power of two, show that p is a Fermat prime.

Proof. For part (a) we will prove the contrapositive statement, i.e., we will prove that if a is
not a power of 2 then 2a + 1 is not prime. So assume that a is not a power of 2. This means
that a must have an odd factor, say a = bc where b is odd and c is arbitrary. In this case we
will show that the number 2a + 1 can be factored. Indeed, note that the polynomial 1 − xb
factors as

1− xb = (1− x)(1 + x+ x2 + x3 + · · ·+ xb−1).

Then substituting x = −2c (and using the fact that b is odd) gives

1− (−2c)b = (1 + 2c)(1 + (−2c) + (−2c)2 + (−2c)3 + · · ·+ (−2c)b−1)

1− (−1)b2bc = (1 + 2c))(1− (−1)c2c + (−1)222c + (−1)323c + · · · (−1)b−12(b−1)c)

1 + 2a = (1 + 2c)(1− 2c + 22c − 23c + · · ·+ 2(b−1)c)

Since 1 + 2c is not equal to 1 or to 1 + 2a we conclude that 1 + 2a is not prime.
For part (b), let p be prime and suppose that ϕ(p) = 2k for some k. From Problem 3(b) we

know that ϕ(p) = p− 1, hence

ϕ(p) = 2k

p− 1 = 2k

p = 2k + 1.

We conclude that p is a Fermat prime. �


