1. Equivalence $\bmod n$. Let S be a set. For each pair $(x, y) \in S^{2}$ we define $x \sim y$ to be either true or false, and we will usually write $x \sim y$ as shorthand for " $x \sim y$ is true". We say that \sim is an equivalence relation if

- $x \sim x$ for all $x \in S$,
- $x \sim y$ implies $y \sim x$ for all $x, y \in S$,
- $x \sim y$ and $y \sim z$ imply $x \sim z$ for all $x, y, z \in S$.

Now let $n \in \mathbb{Z}$ be a nonzero integer. For all $x, y \in \mathbb{Z}$ we will write $x \sim_{n} y$ to mean that n divides $x-y$ (i.e., there exists $k \in \mathbb{Z}$ such that $x-y=n k$). Prove that \sim_{n} is an equivalence relation on \mathbb{Z}.

Proof. First, consider any integer $x \in \mathbb{Z}$. Since $x-x=0=n \cdot 0$ we conclude that $x \sim_{n} x$.
Second, consider any integers $x, y \in \mathbb{Z}$ and assume that $x \sim_{n} y$, i.e., assume that there exists $k \in \mathbb{Z}$ such that $x-y=n k$. Then we have $y-x=-(x-y)=-n k=n(-k)$, and hence $y \sim_{n} x$.

Third, consider any integers $x, y, z \in \mathbb{Z}$ and assume that $x \sim_{n} y$ and $y \sim_{n} z$. In other words, assume that there exist $k, \ell \in \mathbb{Z}$ such that $x-y=n k$ and $y-z=n \ell$. Adding these two equations gives

$$
x-z=(x-y)+(y-z)=n k+n \ell=n(k+\ell),
$$

hence $x \sim_{n} z$. We conclude that \sim_{n} is an equivalence relation on \mathbb{Z}.
2. Primitive Roots of Unity. Consider a positive integer $n \in \mathbb{Z}$ and let $\omega=e^{2 \pi i / n}$.
(a) Prove that $\omega^{k}=\omega^{\ell}$ if and only if $k \sim_{n} \ell$ (as in Problem 1).
(b) Given an integer k, let m be the smallest positive integer such that $\left(\omega^{k}\right)^{m}=1$. Show that $m=\operatorname{lcm}(k, n) / k$.
(c) Prove that ω^{k} is a primitive nth root of 1 if and only if $\operatorname{gcd}(k, n)=1$. $[\operatorname{Hint}: \operatorname{gcd}(k, n)=$ $k n / \operatorname{lcm}(k, n)$.]

Proof. For part (a), first recall that $e^{i \theta}=1$ if and only if $\theta=2 \pi m$ for some $m \in \mathbb{Z}$. Then

$$
\begin{aligned}
\omega^{k}=\omega^{\ell} & \Longleftrightarrow \omega^{k} / \omega^{\ell}=1 \\
& \Longleftrightarrow \omega^{k-\ell}=1 \\
& \Longleftrightarrow e^{2 \pi i(k-\ell) / n}=1 \\
& \Longleftrightarrow 2 \pi(k-\ell) / n=2 \pi m \text { for some } m \in \mathbb{Z} \\
& \Longleftrightarrow k-\ell=n m \text { for some } m \in \mathbb{Z} \\
& \Longleftrightarrow k \sim_{n} \ell .
\end{aligned}
$$

For part (b), let m be the smallest positive integer such that $\left(\omega^{k}\right)^{m}=1$. Note from part (a) that

$$
\begin{aligned}
\left(\omega^{k}\right)^{m}=1 & \Longleftrightarrow \omega^{k m}=1 \\
& \Longleftrightarrow \omega^{k m}=\omega^{0} \\
& \Longleftrightarrow k m \sim_{n} 0 \\
& \Longleftrightarrow k m=n \ell \text { for some } \ell \in \mathbb{Z} \\
& \Longleftrightarrow k m \text { is a multiple of } n \\
& \Longleftrightarrow k m \text { is a common multiple of } k \text { and } n .
\end{aligned}
$$

The last equivalence is true because $k m$ is always a multiple of k so this condition is vacuous. If m is the smallest positive integer such that $k m$ is a common multiple of k and n, then clearly $k m$ must be the least common multiple of k and n. We conclude that

$$
\begin{aligned}
k m & =\operatorname{lcm}(k, n) \\
m & =\frac{1}{k} \operatorname{lcm}(k, n) .
\end{aligned}
$$

For part (c) we recall (or assume, if we don't recall) that

$$
\begin{aligned}
n k & =\operatorname{lcm}(k, n) \cdot \operatorname{gcd}(k, n) \\
n k / \operatorname{lcm}(k, n) & =\operatorname{gcd}(k, n) .
\end{aligned}
$$

Also, we recall the definition of primitive roots: Every nth root of 1 has the form ω^{k} for some $k \in \mathbb{Z}$. We say that ω^{k} is a primitive nth root of 1 if the smallest positive integer m such that $\left(\omega^{k}\right)^{m}=1$ is $m=n$. Thus from part (b) we have

$$
\begin{aligned}
\omega^{k} \text { is primitive } & \Longleftrightarrow n=\frac{1}{k} \operatorname{lcm}(k, n) \\
& \Longleftrightarrow n k / \operatorname{lcm}(k, n)=1 \\
& \Longleftrightarrow \operatorname{gcd}(k, n)=1 .
\end{aligned}
$$

3. Euler's Totient Function. Given a positive integer $n \in \mathbb{Z}$ we define

$$
\varphi(n):=\#\{k: 0 \leq k \leq n-1, \operatorname{gcd}(k, n)=1\} .
$$

(a) Explain why $\varphi(n)$ is the degree of the cyclotomic polynomial $\Phi_{n}(x) \in \mathbb{Z}[x]$.
(b) If $p \in \mathbb{Z}$ is prime and m is a positive integer, prove that $\varphi\left(p^{m}\right)=p^{m}-p^{m-1}$. [Hint: The only integers less than p^{m} that are not coprime to p^{m} are the multiples of p. How many of these are there?]
(c) Prove that for all positive integers n we have

$$
\varphi(n)=n \prod_{p \mid n} \frac{p-1}{p}
$$

where the product is over prime numbers p that divide n. [Hint: You can assume without proof that for all coprime $a, b \in \mathbb{Z}$ we have $\varphi(a b)=\varphi(a) \varphi(b)$. Now express n as a product of primes $n=p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots$.]
(d) Compute the degree of $\Phi_{120}(x)$. Do not compute $\Phi_{120}(x)$ itself.

Proof. For part (a), recall that the nth cyclotomic polynomial is given by

$$
\Phi_{n}(x)=\prod_{\zeta}(x-\zeta)
$$

where ζ runs over the primitive nth roots of unity. From Problem 2(c) we know that the number of primitive nth roots of unity is $\varphi(n)$. Let $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{\varphi(n)}$ be the primitive roots. Then by the additivity of degree we have

$$
\begin{aligned}
\operatorname{deg} \Phi_{n}(x) & =\operatorname{deg}\left(x-\zeta_{1}\right)\left(x-\zeta_{2}\right) \cdots\left(x-\zeta_{\varphi(n)}\right) \\
& =\operatorname{deg}\left(x-\zeta_{1}\right)+\operatorname{deg}\left(x-\zeta_{2}\right)+\cdots+\operatorname{det}\left(x-\zeta_{\varphi(n)}\right) \\
& =\underbrace{1+1+\cdots+1}_{\varphi(n) \text { times }} \\
& =\varphi(n) .
\end{aligned}
$$

For part (b), let p be prime and let m be a positive integer. To compute $\varphi\left(p^{m}\right)$ we must count the integers less than p^{m} that are coprime to p^{m}. In this case it turns out to be easier to count the integers that are not coprime to p^{m} : these are just the multiples of p (any number that is not a multiple of p is necessarily coprime to p^{m} because p is the only prime factor of $\left.p^{m}\right)$. The multiples of p from $1 \cdot p$ up to $p^{m}=p^{m-1} \cdot p$ are

$$
1 \cdot p, 2 \cdot p, 3 \cdot p, \ldots,\left(p^{m-1}-1\right) \cdot p, p^{m-1} \cdot p
$$

and there are p^{m-1} of these. Subtracting these from the p^{m} numbers $1,2,3, \ldots, p^{m}$ gives

$$
\varphi\left(p^{m}\right)=p^{m}-p^{m-1} .
$$

For part (c), we can factor n as

$$
n=p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots p_{k}^{m_{k}}
$$

where $p_{1}, p_{2}, \ldots, p_{k}$ are the distinct prime factors of n. Then we use the fact that φ multiplies over coprime factors [we'll just assume this fact; if you want to look it up, it's called the "Chinese remainder theorem"] we get

$$
\begin{aligned}
\varphi(n) & =\varphi\left(p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots p_{k}^{m_{k}}\right) \\
& =\varphi\left(p_{1}^{m_{1}}\right) \varphi\left(p_{2}^{m_{2}}\right) \cdots \varphi\left(p_{k}^{m_{k}}\right) \\
& =\left(p_{1}^{m_{1}}-p_{1}^{m_{1}-1}\right)\left(p_{2}^{m_{2}}-p_{2}^{m_{2}-1}\right) \cdots\left(p_{k}^{m_{k}}-p_{k}^{m_{k}-1}\right) \\
& =p_{1}^{m_{1}}\left(\frac{p_{1}-1}{p_{1}}\right) p_{2}^{m_{2}}\left(\frac{p_{2}-1}{p_{2}}\right) \cdots p_{k}^{m_{k}}\left(\frac{p_{k}-1}{p_{k}}\right) \\
& =p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots p_{k}^{m_{k}}\left(\frac{p_{1}-1}{p_{1}}\right)\left(\frac{p_{2}-1}{p_{2}}\right) \cdots\left(\frac{p_{k}-1}{p_{k}}\right) \\
& =n\left(\frac{p_{1}-1}{p_{1}}\right)\left(\frac{p_{2}-1}{p_{2}}\right) \cdots\left(\frac{p_{k}-1}{p_{k}}\right) \\
& =n \prod_{i=1}^{k}\left(\frac{p_{i}-1}{p_{i}}\right)
\end{aligned}
$$

which is just what we wanted to show.

For part (d), we will apply the formula from part (c) to compute $\varphi(120)$. Note that $120=$ $2^{3} \cdot 3 \cdot 5$, so the prime factors are 2,3 , and 5 . Then the formula says

$$
\begin{aligned}
\varphi(120) & =120\left(\frac{2-1}{2}\right)\left(\frac{3-1}{3}\right)\left(\frac{5-1}{5}\right) \\
& =120\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)\left(\frac{4}{5}\right) \\
& =32
\end{aligned}
$$

We conclude that there are 32 primitive 120 th roots of unity, and hence $\operatorname{deg} \Phi_{120}(x)=32$. Note that since $\varphi(120)=32=2^{5}$ is a power of 2 , the Gauss-Wantzel Theorem tells us that the regular 120 -gon is constructible with straightedge and compass.
[For the curious, my computer told me that $\Phi_{120}(x)=x^{32}+x^{28}-x^{20}-x^{16}-x^{12}+x^{4}+1$ and $x^{120}-1=(x-1)\left(1+x^{4}+x^{3}+x^{2}+x\right)\left(1+x^{2}+x\right)\left(1-x+x^{3}-x^{4}+x^{5}-x^{7}+x^{8}\right)(1+x)$

$$
\begin{aligned}
& \left(1-x+x^{2}-x^{3}+x^{4}\right)\left(1-x+x^{2}\right)\left(x^{8}+x^{7}-x^{5}-x^{4}-x^{3}+x+1\right)\left(1+x^{2}\right) \\
& \left(x^{8}-x^{6}+x^{4}-x^{2}+1\right)\left(x^{4}-x^{2}+1\right)\left(x^{16}+x^{14}-x^{10}-x^{8}-x^{6}+x^{2}+1\right) \\
& \left(1+x^{4}\right)\left(x^{16}-x^{12}+x^{8}-x^{4}+1\right)\left(x^{8}-x^{4}+1\right)\left(x^{32}+x^{28}-x^{20}-x^{16}-x^{12}+x^{4}+1\right)
\end{aligned}
$$

Obviously I would never compute that by hand.]
4. Fermat Primes. In 1650, Pierre de Fermat conjectured that every number of the form $F(n)=2^{2^{n}}+1$ is prime. He based this conjecture on the fact that $F(0)=3, F(1)=5, F(2)=$ $17, F(3)=257, F(4)=65537$ are prime. However, Euler showed in 1732 that $F(5)$ is not prime, and to this day it is not known whether there exist any other "Fermat primes". D'oh!
(a) If $2^{a}+1$ is a prime number, prove that a must be a power of 2 . [Hint: Suppose that $a=b c$ where b is odd. Factor the polynomial $1-x^{b}$ and then substitute $x=-2^{c}$.]
(b) Let p be prime. If $\varphi(p)$ is a power of two, show that p is a Fermat prime.

Proof. For part (a) we will prove the contrapositive statement, i.e., we will prove that if a is not a power of 2 then $2^{a}+1$ is not prime. So assume that a is not a power of 2 . This means that a must have an odd factor, say $a=b c$ where b is odd and c is arbitrary. In this case we will show that the number $2^{a}+1$ can be factored. Indeed, note that the polynomial $1-x^{b}$ factors as

$$
1-x^{b}=(1-x)\left(1+x+x^{2}+x^{3}+\cdots+x^{b-1}\right)
$$

Then substituting $x=-2^{c}$ (and using the fact that b is odd) gives

$$
\begin{aligned}
1-\left(-2^{c}\right)^{b} & =\left(1+2^{c}\right)\left(1+\left(-2^{c}\right)+\left(-2^{c}\right)^{2}+\left(-2^{c}\right)^{3}+\cdots+\left(-2^{c}\right)^{b-1}\right) \\
1-(-1)^{b} 2^{b c} & \left.=\left(1+2^{c}\right)\right)\left(1-(-1)^{c} 2^{c}+(-1)^{2} 2^{2 c}+(-1)^{3} 2^{3 c}+\cdots(-1)^{b-1} 2^{(b-1) c}\right) \\
1+2^{a} & =\left(1+2^{c}\right)\left(1-2^{c}+2^{2 c}-2^{3 c}+\cdots+2^{(b-1) c}\right)
\end{aligned}
$$

Since $1+2^{c}$ is not equal to 1 or to $1+2^{a}$ we conclude that $1+2^{a}$ is not prime.
For part (b), let p be prime and suppose that $\varphi(p)=2^{k}$ for some k. From Problem 3(b) we know that $\varphi(p)=p-1$, hence

$$
\begin{aligned}
\varphi(p) & =2^{k} \\
p-1 & =2^{k} \\
p & =2^{k}+1
\end{aligned}
$$

We conclude that p is a Fermat prime.

