1. Equivalence mod n. Let S be a set. For each pair $(x, y) \in S^2$ we define $x \sim y$ to be either true or false, and we will usually write $x \sim y$ as shorthand for " $x \sim y$ is true". We say that \sim is an **equivalence relation** if

- $x \sim x$ for all $x \in S$,
- $x \sim y$ implies $y \sim x$ for all $x, y \in S$,
- $x \sim y$ and $y \sim z$ imply $x \sim z$ for all $x, y, z \in S$.

Now let $n \in \mathbb{Z}$ be a **nonzero** integer. For all $x, y \in \mathbb{Z}$ we will write $x \sim_n y$ to mean that n divides x - y (i.e., there exists $k \in \mathbb{Z}$ such that x - y = nk). Prove that \sim_n is an equivalence relation on \mathbb{Z} .

2. Primitive Roots of Unity. Consider a positive integer $n \in \mathbb{Z}$ and let $\omega = e^{2\pi i/n}$.

- (a) Prove that $\omega^k = \omega^\ell$ if and only if $k \sim_n \ell$ (as in Problem 1).
- (b) Given an integer k, let m be the smallest positive integer such that $(\omega^k)^m = 1$. Show that $m = \operatorname{lcm}(k, n)/k$.
- (c) Prove that ω^k is a primitive *n*th root of 1 if and only if gcd(k, n) = 1. [Hint: gcd(k, n) = kn/lcm(k, n).]
- **3.** Euler's Totient Function. Given a positive integer $n \in \mathbb{Z}$ we define

$$\varphi(n) := \#\{k : 0 \le k \le n - 1, \gcd(k, n) = 1\}.$$

- (a) Explain why $\varphi(n)$ is the degree of the cyclotomic polynomial $\Phi_n(x) \in \mathbb{Z}[x]$.
- (b) If $p \in \mathbb{Z}$ is prime and *m* is a positive integer, prove that $\varphi(p^m) = p^m p^{m-1}$. [Hint: The only integers less than p^m that are not coprime to p^m are the multiples of *p*. How many of these are there?]
- (c) Prove that for all positive integers n we have

$$\varphi(n) = n \prod_{p|n} \frac{p-1}{p},$$

where the product is over prime numbers p that divide n. [Hint: You can assume without proof that for all coprime $a, b \in \mathbb{Z}$ we have $\varphi(ab) = \varphi(a)\varphi(b)$. Now express n as a product of primes $n = p_1^{m_1} p_2^{m_2} \cdots$.]

(d) Compute the degree of $\Phi_{120}(x)$. Do not compute $\Phi_{120}(x)$ itself.

4. Fermat Primes. In 1650, Pierre de Fermat conjectured that every number of the form $F(n) = 2^{2^n} + 1$ is prime. He based this conjecture on the fact that F(0) = 3, F(1) = 5, F(2) = 17, F(3) = 257, F(4) = 65537 are prime. However, Euler showed in 1732 that F(5) is not prime, and to this day it is not known whether there exist **any** other "Fermat primes". D'oh!

- (a) If $2^a + 1$ is a prime number, prove that *a* must be a power of 2. [Hint: Suppose that a = bc where *b* is **odd**. Factor the polynomial $1 x^b$ and then substitute $x = -2^c$.]
- (b) Let p be prime. If $\varphi(p)$ is a power of two, show that p is a Fermat prime.