1. Equivalence $\bmod n$. Let S be a set. For each pair $(x, y) \in S^{2}$ we define $x \sim y$ to be either true or false, and we will usually write $x \sim y$ as shorthand for " $x \sim y$ is true". We say that \sim is an equivalence relation if

- $x \sim x$ for all $x \in S$,
- $x \sim y$ implies $y \sim x$ for all $x, y \in S$,
- $x \sim y$ and $y \sim z$ imply $x \sim z$ for all $x, y, z \in S$.

Now let $n \in \mathbb{Z}$ be a nonzero integer. For all $x, y \in \mathbb{Z}$ we will write $x \sim_{n} y$ to mean that n divides $x-y$ (i.e., there exists $k \in \mathbb{Z}$ such that $x-y=n k$). Prove that \sim_{n} is an equivalence relation on \mathbb{Z}.
2. Primitive Roots of Unity. Consider a positive integer $n \in \mathbb{Z}$ and let $\omega=e^{2 \pi i / n}$.
(a) Prove that $\omega^{k}=\omega^{\ell}$ if and only if $k \sim_{n} \ell$ (as in Problem 1).
(b) Given an integer k, let m be the smallest positive integer such that $\left(\omega^{k}\right)^{m}=1$. Show that $m=\operatorname{lcm}(k, n) / k$.
(c) Prove that ω^{k} is a primitive nth root of 1 if and only if $\operatorname{gcd}(k, n)=1$. [Hint: $\operatorname{gcd}(k, n)=$ $k n / \operatorname{lcm}(k, n)$.]
3. Euler's Totient Function. Given a positive integer $n \in \mathbb{Z}$ we define

$$
\varphi(n):=\#\{k: 0 \leq k \leq n-1, \operatorname{gcd}(k, n)=1\} .
$$

(a) Explain why $\varphi(n)$ is the degree of the cyclotomic polynomial $\Phi_{n}(x) \in \mathbb{Z}[x]$.
(b) If $p \in \mathbb{Z}$ is prime and m is a positive integer, prove that $\varphi\left(p^{m}\right)=p^{m}-p^{m-1}$. [Hint: The only integers less than p^{m} that are not coprime to p^{m} are the multiples of p. How many of these are there?]
(c) Prove that for all positive integers n we have

$$
\varphi(n)=n \prod_{p \mid n} \frac{p-1}{p}
$$

where the product is over prime numbers p that divide n. [Hint: You can assume without proof that for all coprime $a, b \in \mathbb{Z}$ we have $\varphi(a b)=\varphi(a) \varphi(b)$. Now express n as a product of primes $n=p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots$.]
(d) Compute the degree of $\Phi_{120}(x)$. Do not compute $\Phi_{120}(x)$ itself.
4. Fermat Primes. In 1650, Pierre de Fermat conjectured that every number of the form $F(n)=2^{2^{n}}+1$ is prime. He based this conjecture on the fact that $F(0)=3, F(1)=5, F(2)=$ $17, F(3)=257, F(4)=65537$ are prime. However, Euler showed in 1732 that $F(5)$ is not prime, and to this day it is not known whether there exist any other "Fermat primes". D'oh!
(a) If $2^{a}+1$ is a prime number, prove that a must be a power of 2 . [Hint: Suppose that $a=b c$ where b is odd. Factor the polynomial $1-x^{b}$ and then substitute $x=-2^{c}$.]
(b) Let p be prime. If $\varphi(p)$ is a power of two, show that p is a Fermat prime.

