
Math 461 Spring 2015
Homework 4 Drew Armstrong

1. Difference of Like Powers. Let n be a positive integer and define ω := e2πi/n. Prove
that for all numbers a and b we have

an − bn = (a− b)(a− ωb)(a− ω2b) · · · (a− ωn−1b).

Proof 1: First note that the formula is true for b = 0:

an − 0 = (a− 0)(a− 0)(a− 0) · · · (a− 0).

Next suppose that b 6= 0. We know that for all numbers x we have

xn − 1 = (x− 1)(x− ω)(x− ω2) · · · (x− ωn−1).

This is because of Descartes’ Factor Theorem and the fact that 1, ω, . . . , ωn−1 are the roots of
the polynomial xn − 1. Since b 6= 0 we can substitute x = a
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Finally, multiply both sides by bn to get the desired formula. ///

Proof 2: Alternatively, we can note that the nth roots of bn are

b, ωb, ω2b, . . . , ωn−1b.

Then by Descartes’ Factor Theorem we can factor the polynomial xn − bn as

xn − bn = (x− b)(x− ωb)(x− ω2b) · · · (x− ωn−1b).

Now substitute x = a to get the desired formula. ///

2. Roots of Numbers Other Than 1.

(a) Compute the fourth roots of −1.
(b) Use part (a) to factor x4 + 1 over the real numbers.

For part (a) we want to solve the equation x4 = −1. Let x = reiθ in polar coordinates.
Then we have

r4ei4θ = −1 = eiπ

which implies that r = 1 and
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for any k ∈ Z. This gives us four solutions:

x = eiπ/4, ei3π/4, ei5π4, ei7π4.
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For part (b) we first note from part (a) that
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Unfortunately these factors have complex coefficients. To get real coefficients we multiply
them together in conjugate pairs:
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[It is easy to check that this factorization is correct, but it is not so easy to come up with it unless
you know about the polar form of complex numbers. In 1702 Gottfried Wilhelm Leibniz (one of
the inventors of the Calculus) claimed that polynomials of the form x4 + a4 are irreducible over
R. He was wrong, as you see.]

3. Cyclotomic Polynomials. We say that ζ ∈ C is a primitive nth root of 1 if (1) ζn = 1
and (2) ζm 6= 1 for m < n. The nth cyclotomic polynomial is defined by

Φn(x) :=
∏
ζ

(x− ζ)

where ζ runs over the primitive nth roots of 1.

(a) Find all the primitive 8th roots of 1.
(b) Use part (a) to compute Φ8(x).
(c) Use part (b) to completely factor x8 − 1 over the integers.

For part (a) let ω := e2πi/8 = eiπ/4. The 8th roots of 1 are

1, ω, ω2, ω3, ω4, ω5, ω6, ω7.

Among these, note that 1 is a first root of 1, 1 and ω4 are second roots of 1, and 1, ω2, ω4, ω6

are fourth roots of 1. Thus the primitive 8th roots of 1 are

ω = eiπ/4, ω3 = ei3π/4, ω5 = ei5π/4, ω7 = ei7π/4.

You may notice from Problem 2 that these are the same as the 4th roots of −1. [Did I plan
that?]

For part (b) we can use part (a) and the results of Problem 2 to see that

Φ8(x) = (x− ω)(x− ω3)(x− ω5)(x− ω7) = x4 + 1.

For part (c) we have two options. First, we can recall the formula

x8 − 1 = Φ1(x)Φ2(x)Φ4(x)Φ8(x).

We can recall (or compute) that Φ1(x) = (x− 1), Φ2(x) = (x+ 1), and Φ4(x) = x2 + 1, hence

x8 − 1 = (x− 1)(x+ 1)(x2 + 1)(x4 + 1).



Second, we can use the fact that x8 − 1 is a difference of squares to write

x8 − 1 = (x4 + 1)(x4 − 1)

and then use the fact that x4 − 1 is a difference of squares to write

x8 − 1 = (x4 + 1)(x2 + 1)(x2 − 1)

and then use the fact that x2 − 1 is a difference of squares to write

x8 − 1 = (x4 + 1)(x2 + 1)(x+ 1)(x− 1).

4. Trisecting an Angle.

(a) Use de Moivre’s Theorem to express cos(3θ) as a polynomial in cos(θ).
(b) Solve the polynomial equation from part (a) to express cos(θ) in terms of cos(3θ).
(c) Use part (b) to find the exact value of cos(π/9).

For part (a) we first use de Moivre’s Theorem to get

cos(3θ) + i sin(3θ) = (cos θ + i sin θ)3

= cos3 θ + 3i cos2 θ sin θ − 3 cos θ sin2 θ − i sin3 θ

= (cos3 θ − 3 cos θ sin2 θ) + i(3 cos3 θ sin θ − sin3 θ).

Then by equating the real parts and using the fact that sin2 θ = 1− cos2 θ gives

cos(3θ) = cos3 θ − 3 cos θ sin2 θ

= cos3 θ − 3 cos θ(1− cos2 θ)

= 4 cos3 θ − 3 cos θ.

For part (b) let x = cos θ and c = cos(3θ). We want to solve the following equation for x:

4x3 − 3x = c,
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Luckily this is a depressed cubic so we can use Cardano’s Formula with p = −3
4 and q = − c

4
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We can simplify this a bit if we write s = sin(3θ) so that c2 − 1 = −s2. Then we have
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In other words,
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cos(3θ)− i sin(3θ).

That’s not a “nice” formula, but it is a formula. ///

For part (c) we use our not-nice formula to find the exact value of cos(π/9). We put θ = π/9
in the formula to get
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[We might wonder if this not-nice formula for cos(π/9) can be simplified. We will soon prove in
class that the answer is NO IT CANNOT. Specifically, we will prove that the number cos(π/9)
is not constructible, i.e., it cannot be expressed via the integers using only field operations and
square roots.]

5. Rational Root Test. Let f(x) ∈ Z[x] be a polynomial with integer coefficients, say
f(x) = c0 + c1x+ c2x

2 + · · ·+ cnx
n with cn 6= 0.

(a) If f(a/b) = 0 for some integers a, b ∈ Z with no common factor, prove that a divides
c0 and b divides cn. [Hint: Multiply both sides of f(a/b) = 0 by bn.]

(b) Use part (a) to prove that the polynomial f(x) = x3 − 3x− 1 has no rational root.

For part (a) we assume that a, b ∈ Z have no common factor. This means we can assume
b 6= 0 (since otherwise a would be a common factor). Now suppose that f(a/b) = 0, i.e.,
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Multiply both sides by bn to get
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We conclude that a divides the number c0b

n. Since a and b have no common factor, this
implies that a divides the number c0, as desired. The proof that b divides cn is similar.

For part (b) consider f(x) = x3 − 3x − 1 ∈ Z[x]. Assume for contradiction that we have
f(a/b) = 0 for some a, b ∈ Z. Then part (a) tells us that a divides −1 (hence a = ±1) and b
divides 1 (hence b = ±1), hence a/b = ±1. But notice that

f(1) = 1− 3− 1 = −3 6= 0 and f(−1) = −1 + 3− 1 = 1 6= 0.

Contradiction. ///

[We will see later that Problem 5(b) is the final step in the proof that cos(π/9) is not a constructible
number (and hence it is impossible to trisect the angle with straightedge and compass). Stay tuned
for the rest of the proof.]


