1. Difference of Like Powers. Let n be a positive integer and define $\omega:=e^{2 \pi i / n}$. Prove that for all numbers a and b we have

$$
a^{n}-b^{n}=(a-b)(a-\omega b)\left(a-\omega^{2} b\right) \cdots\left(a-\omega^{n-1} b\right)
$$

2. Roots of Numbers Other Than 1.

(a) Compute the fourth roots of -1 .
(b) Use part (a) to factor $x^{4}+1$ over the real numbers.
3. Cyclotomic Polynomials. We say that $\zeta \in \mathbb{C}$ is a primitive nth root of 1 if (1) $\zeta^{n}=1$ and $(2) \zeta^{m} \neq 1$ for $m<n$. The nth cyclotomic polynomial is defined by

$$
\Phi_{n}(x):=\prod_{\zeta}(x-\zeta)
$$

where ζ runs over the primitive nth roots of 1 .
(a) Find all the primitive 8th roots of 1.
(b) Use part (a) to compute $\Phi_{8}(x)$.
(c) Use part (b) to completely factor $x^{8}-1$ over the integers.
4. Trisecting an Angle.
(a) Use de Moivre's Theorem to express $\cos (3 \theta)$ as a polynomial in $\cos (\theta)$.
(b) Solve the polynomial equation from part (a) to express $\cos (\theta)$ in terms of $\cos (3 \theta)$.
(c) Use part (b) to find the exact value of $\cos (\pi / 9)$.
5. Rational Root Test. Let $f(x) \in \mathbb{Z}[x]$ be a polynomial with integer coefficients, say $f(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n}$ with $c_{n} \neq 0$.
(a) If $f(a / b)=0$ for some integers $a, b \in \mathbb{Z}$ with no common factor, prove that a divides c_{0} and b divides c_{n}. [Hint: Multiply both sides of $f(a / b)=0$ by b^{n}.]
(b) Use part (a) to prove that the polynomial $f(x)=x^{3}-3 x-1$ has no rational root.

