1. Difference of Like Powers. Let n be a positive integer and define $\omega := e^{2\pi i/n}$. Prove that for all numbers a and b we have

$$a^n - b^n = (a - b)(a - \omega b)(a - \omega^2 b) \cdots (a - \omega^{n-1} b).$$

2. Roots of Numbers Other Than 1.

- (a) Compute the fourth roots of -1.
- (b) Use part (a) to factor $x^4 + 1$ over the real numbers.

3. Cyclotomic Polynomials. We say that $\zeta \in \mathbb{C}$ is a **primitive** *n*th root of 1 if (1) $\zeta^n = 1$ and (2) $\zeta^m \neq 1$ for m < n. The *n*th cyclotomic polynomial is defined by

$$\Phi_n(x) := \prod_{\zeta} (x - \zeta)$$

where ζ runs over the primitive *n*th roots of 1.

- (a) Find all the primitive 8th roots of 1.
- (b) Use part (a) to compute $\Phi_8(x)$.
- (c) Use part (b) to completely factor $x^8 1$ over the integers.

4. Trisecting an Angle.

- (a) Use de Moivre's Theorem to express $\cos(3\theta)$ as a polynomial in $\cos(\theta)$.
- (b) Solve the polynomial equation from part (a) to express $\cos(\theta)$ in terms of $\cos(3\theta)$.
- (c) Use part (b) to find the exact value of $\cos(\pi/9)$.

5. Rational Root Test. Let $f(x) \in \mathbb{Z}[x]$ be a polynomial with integer coefficients, say $f(x) = c_0 + c_1 x + c_2 x^2 + \cdots + c_n x^n$ with $c_n \neq 0$.

- (a) If f(a/b) = 0 for some integers $a, b \in \mathbb{Z}$ with no common factor, prove that a divides c_0 and b divides c_n . [Hint: Multiply both sides of f(a/b) = 0 by b^n .]
- (b) Use part (a) to prove that the polynomial $f(x) = x^3 3x 1$ has no rational root.