1. De Moivre's Theorem.

(a) Use de Moivre's Theorem to express $\cos (2 \theta)$ as a polynomial in $\cos (\theta)$.
(b) Solve this polynomial to obtain a formula for $\cos (\theta)$ in terms of $\cos (2 \theta)$.
(c) Use the formula from (b) to find the exact value of $\cos (\pi / 8)$.

For part (a) we have

$$
\begin{aligned}
\cos (2 \theta)+i \sin (2 \theta) & =(\cos \theta+i \sin \theta)^{2} \\
& =\cos \theta \cos \theta+2 i \sin \theta \cos \theta+i^{2} \sin \theta \sin \theta \\
& =\left(\cos ^{2} \theta-\sin ^{2} \theta\right)+i(2 \sin \theta \cos \theta)
\end{aligned}
$$

Comparing the real parts of both sides gives

$$
\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta
$$

Now remember that $\cos ^{2} \theta+\sin ^{2} \theta=1$. Why? This is just the Pythagorean Theorem:

Thus we have

$$
\begin{equation*}
\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta=\cos ^{2} \theta-\left(1-\cos ^{2} \theta\right)=2 \cos ^{2} \theta-1 \tag{1}
\end{equation*}
$$

For part (b), we solve equation (1) to obtain

$$
\cos \theta=\sqrt{\frac{\cos (2 \theta)+1}{2}}
$$

This is sometimes called the "half-angle formula" because it allows us to compute $\cos (\theta / 2)$ whenever we know $\cos \theta$:

$$
\cos (\theta / 2)=\sqrt{\frac{\cos \theta+1}{2}}=\frac{1}{2} \sqrt{2+2 \cos \theta} .
$$

For part (c), start with an angle you know. Do you know that $\cos (\pi / 2)=0$? Good. Then

$$
\cos (\pi / 4)=\frac{1}{2} \sqrt{2+2 \cos (\pi / 2)}=\frac{1}{2} \sqrt{2+2 \cdot 0}=\frac{1}{2} \sqrt{2} .
$$

Applying the formula again gives

$$
\cos (\pi / 8)=\frac{1}{2} \sqrt{2+2 \cos (\pi / 4)}=\frac{1}{2} \sqrt{2+\sqrt{2}} .
$$

Just for fun, let's also compute $\cos (\pi / 16)$:

$$
\cos (\pi / 16)=\frac{1}{2} \sqrt{2+2 \cos (\pi / 8)}=\frac{1}{2} \sqrt{2+\sqrt{2+\sqrt{2}}} .
$$

Hey, now I see a pattern. And it tells me that

$$
\lim _{n \rightarrow \infty} \cos \left(\frac{\pi}{2^{n}}\right)=\frac{1}{2} \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\cdots}}}}
$$

But of course we know that

$$
\lim _{n \rightarrow \infty} \cos \left(\frac{\pi}{2^{n}}\right)=\cos (0)=1
$$

hence

$$
2=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\cdots}}}}
$$

That's was kind of fun, right?

2. Quadratic Formula Again.

(a) Compute the square roots of i.
(b) Use part (a) to solve the equation $\frac{1}{2} z^{2}+(1+i) z+\frac{i}{2}=0$ for $z \in \mathbb{C}$.

For part (a) we want to solve the equation $x^{2}=i$. To do this we will express x and i in polar coordinates: let $x=r e^{i \theta}$ and note that $i=e^{i \pi / 2}$. Then we have

$$
\begin{aligned}
x^{2} & =i \\
\left(r e^{i \theta}\right)^{2} & =e^{i \pi / 2} \\
r^{2} e^{i 2 \theta} & =e^{i \pi / 2}
\end{aligned}
$$

Comparing lengths gives $r=1$ and comparing angles gives

$$
\begin{aligned}
2 \theta-\pi / 2 & =2 \pi k \\
2 \theta & =2 \pi k+\pi / 2 \\
\theta & =\frac{2 \pi k+\pi / 2}{2} \\
\theta & =\pi / 4+\pi k
\end{aligned}
$$

for any $k \in \mathbb{Z}$. We conclude that the square roots of i are

$$
x=\sqrt{i}=e^{\pi / 4+\pi k}, \text { for any } k \in \mathbb{Z} .
$$

That looks like a lot, but it really just represents two complex numbers:

$$
e^{i \pi / 4}=(1+i) / \sqrt{2} \quad \text { and } \quad e^{i(\pi / 4+\pi)}=-(1+i) / \sqrt{2} .
$$

Here is a picture of i and its two square roots:

For part (b) we apply the good old Quadratic Formula to get

$$
z=-(1+i)+\sqrt{(1+i)^{2}-i}=-(1+i)+\sqrt{(1+2 i-1)-i}=-(1+i)+\sqrt{i} .
$$

Finally, we use the square roots of i computed in part (a) to get

$$
z=-(1+i)+\frac{1}{\sqrt{2}}(1+i)=\left(-1+\frac{1}{\sqrt{2}}\right)(1+i)=\left(\frac{-2+\sqrt{2}}{2}\right)(1+i)
$$

or

$$
z=-(1+i)-\frac{1}{\sqrt{2}}(1+i)=\left(-1-\frac{1}{\sqrt{2}}\right)(1+i)=\left(\frac{-2-\sqrt{2}}{2}\right)(1+i)
$$

3. Complex Conjugation. Recall that complex conjgation $*: \mathbb{C} \rightarrow \mathbb{C}$ is defined by

$$
(a+i b)^{*}:=a-i b .
$$

Show that for all $u, v \in \mathbb{C}$ we have
(a) $(u+v)^{*}=u^{*}+v^{*}$
(b) $(u v)^{*}=u^{*} v^{*}$
(c) $|u \| v|=|u v|$. [Hint: $|u|^{2}=u u^{*}$.]

Let $u=a+i b$ and $v=c+i d$ where a, b, c, d are real. For part (a) we have

$$
\begin{aligned}
u^{*}+v^{*} & =(a+i b)^{*}+(c+i d)^{*} \\
& =(a-i b)+(c-i d) \\
& =(a+c)-i(b+d) \\
& =((a+c)+i(b+d))^{*} \\
& =((a+i b)+(c+i d))^{*} \\
& =(u+v)^{*} .
\end{aligned}
$$

For part (b) we have

$$
\begin{aligned}
u^{*} v^{*} & =(a+i b)^{*}(c+i d)^{*} \\
& =(a-i b)(c-i d) \\
& =(a c-b d)+i(-a d-b c) \\
& =(a c-b d)-i(a d+b c) \\
& =((a c-b d)+i(a d+b c))^{*} \\
& =((a+i b)(c+i d))^{*} \\
& =(u v)^{*} .
\end{aligned}
$$

For part (c) we don't need to do any more real work, because it follows directly from (b) that

$$
\begin{aligned}
|u|^{2}|v|^{2} & =\left(u u^{*}\right)\left(v v^{*}\right) \\
& =(u v)\left(u^{*} v^{*}\right) \\
& =(u v)(u v)^{*} \\
& =|u v|^{2} .
\end{aligned}
$$

Now take the positive square root of both sides.

4. Conjugate Pairs of Roots.

(a) Consider a polynomial with real coefficients, $f(x) \in \mathbb{R}[x]$. Show that for all complex numbers $z \in \mathbb{C}$ we have $f(z)^{*}=f\left(z^{*}\right)$.
(b) Conclude that the complex roots of a real polynomial come in conjugate pairs.

For part (a), assume that $f(x)=\sum_{k \geq 0} a_{k} x^{k}$ is a polynomial with real coefficients, and let z be any complex number. Then $f(z)$ is a complex number so we can compute its conjugate. Since the coefficients a_{k} are real we have $\left(a_{k}\right)^{*}=a_{k}$ for all k. Using Problem 3(a) and then 3(b) gives

$$
\begin{align*}
f(z)^{*} & =\left(\sum_{k \geq 0} a_{k} z^{k}\right)^{*} \\
& =\sum_{k \geq 0}\left(a_{k} z^{k}\right)^{*} \tag{a}\\
& =\sum_{k \geq 0}\left(a_{k}\right)^{*}\left(z^{k}\right)^{*} \tag{b}\\
& =\sum_{k \geq 0} a_{k}\left(z^{k}\right)^{*} \quad 3(a) \\
& =\sum_{k \geq 0} a_{k}\left(z^{*}\right)^{k} \\
& =f\left(z^{*}\right) .
\end{align*}
$$

In the last step we used the fact that $\left(z^{k}\right)^{*}=\left(z^{*}\right)^{k}$. Why is this true? Because of $3(\mathrm{~b})$:

$$
\left(z^{k}\right)^{*}=(\underbrace{z \cdot z \cdots z}_{k \text { times }})^{*}=\underbrace{z^{*} \cdot z^{*} \cdots z^{*}}_{k \text { times }}=\left(z^{*}\right)^{k} .
$$

Technically, we should use induction on k to prove this, but why bother?

For part (b), assume that $f(x)$ is a polynomial with real coefficients and suppose that $f(z)=0$ for some complex number z. Then from part (a) we have

$$
f\left(z^{*}\right)=f(z)^{*}=0^{*}=0,
$$

hence z^{*} is also a root. This implies that the complex (non-real) roots of $f(x)$ come in complexconjugate pairs. In other words, the set of roots of $f(x)$ in the complex plane has a reflection symmetry across the real axis.
5. Useful Little Theorem. Let $f(x)$ be a polynomial of degree 3 with real coefficients. Prove that if $f(x)$ has a complex root, then it must also have a real root. [Hint: If $f(u)=0$ for some $u \in \mathbb{C}$, show that $f(x)$ is divisible by $\left(x^{2}-\left(u+u^{*}\right) x+u u^{*}\right)$. Show that the quotient must have real coefficients.]

You might think that this is a Useless Little Theorem, because we already know (by the Intermediate Value Theorem) that every real polynomial of degree 3 has a real root. That's a valid objection, but we will see later that this theorem is surprisingly useful in a different context. For example, we will use it to prove that a regular 7-gon can not be constructed with a ruler and compass.

Proof. Suppose that $f(x) \in \mathbb{R}[x]$ has degree 3 and suppose that $f(u)=0$ for some $u \in \mathbb{C}$. We will show that $f(x)$ has a real root. If u is real then we're done. Otherwise, Problem 4(b) implies that u^{*} is another root of $f(x)$. Using Descartes' Factor Theorem gives

$$
f(x)=(x-u)\left(x-u^{*}\right) g(x)
$$

where $g(x)$ is a polynomial of degree 1 , say $g(x)=a x+b$. But then $g(-b / a)=0$ and hence $f(-b / a)=0$. We will be done if we can show that $-b / a$ is a real number. In fact, we will show that a and b are both real.

This might seem obvious, but it's not. We know that $f(x)$ has real coefficients, but there are complex numbers on the right side of the equation and it's possible that they cancel in some complicated way. The key is to expand

$$
(x-u)\left(x-u^{*}\right)=\left(x^{2}-\left(u+u^{*}\right) x+u u^{*}\right),
$$

and to observe that $u+u^{*}$ and $u u^{*}$ are both real. [Why is this?] Thus $g(x)$ is the quotient of a real polynomial divided by a real polynomial. This implies that $g(x)$ has real coefficients.
[That last part (showing that $g(x)$ has real coefficients) was a little bit subtle. I expect many people got confused, and that's OK! As I mentioned before, it is not immediately obvious that this Useful Little Theorem is interesting. You'll have to take my word for it and be patient.]

