1. De Moivre's Theorem.

(a) Use de Moivre's Theorem to express $\cos (2 \theta)$ as a polynomial in $\cos (\theta)$.
(b) Solve this polynomial to obtain a formula for $\cos (\theta)$ in terms of $\cos (2 \theta)$.
(c) Use the formula from (b) to find the exact value of $\cos (\pi / 8)$.

2. Quadratic Formula Again.

(a) Compute the square roots of i.
(b) Use part (a) to solve the equation $\frac{1}{2} z^{2}+(1+i) z+\frac{i}{2}=0$ for $z \in \mathbb{C}$.
3. Complex Conjugation. Recall that complex conjgation $*: \mathbb{C} \rightarrow \mathbb{C}$ is defined by

$$
(a+i b)^{*}:=a-i b
$$

Show that for all $u, v \in \mathbb{C}$ we have
(a) $(u+v)^{*}=u^{*}+v^{*}$
(b) $(u v)^{*}=u^{*} v^{*}$
(c) $|u||v|=|u v|$. [Hint: $|u|^{2}=u u^{*}$.]

4. Conjugate Pairs of Roots.

(a) Consider a polynomial with real coefficients, $f(x) \in \mathbb{R}[x]$. Show that for all complex numbers $z \in \mathbb{C}$ we have $f(z)^{*}=f\left(z^{*}\right)$.
(b) Conclude that the complex roots of a real polynomial come in conjugate pairs.
5. Useful Little Theorem. Let $f(x)$ be a polynomial of degree 3 with real coefficients. Prove that if $f(x)$ has a complex root, then it must also have a real root. [Hint: If $f(u)=0$ for some $u \in \mathbb{C}$, show that $f(x)$ is divisible by $\left(x^{2}-\left(u+u^{*}\right) x+u u^{*}\right)$. Show that the quotient must have real coefficients.]

