1. De Moivre's Theorem.

- (a) Use de Moivre's Theorem to express $\cos(2\theta)$ as a polynomial in $\cos(\theta)$.
- (b) Solve this polynomial to obtain a formula for $\cos(\theta)$ in terms of $\cos(2\theta)$.
- (c) Use the formula from (b) to find the exact value of $\cos(\pi/8)$.

2. Quadratic Formula Again.

- (a) Compute the square roots of i.
- (b) Use part (a) to solve the equation $\frac{1}{2}z^2 + (1+i)z + \frac{i}{2} = 0$ for $z \in \mathbb{C}$.
- **3.** Complex Conjugation. Recall that complex conjugation $* : \mathbb{C} \to \mathbb{C}$ is defined by

$$(a+ib)^* := a-ib.$$

Show that for all $u, v \in \mathbb{C}$ we have

- (a) $(u+v)^* = u^* + v^*$
- (b) $(uv)^* = u^*v^*$
- (c) |u||v| = |uv|. [Hint: $|u|^2 = uu^*$.]

4. Conjugate Pairs of Roots.

- (a) Consider a polynomial with **real** coefficients, $f(x) \in \mathbb{R}[x]$. Show that for all **complex** numbers $z \in \mathbb{C}$ we have $f(z)^* = f(z^*)$.
- (b) Conclude that the **complex** roots of a **real** polynomial come in conjugate pairs.

5. Useful Little Theorem. Let f(x) be a polynomial of degree 3 with real coefficients. Prove that if f(x) has a **complex** root, then it must also have a **real** root. [Hint: If f(u) = 0 for some $u \in \mathbb{C}$, show that f(x) is divisible by $(x^2 - (u + u^*)x + uu^*)$. Show that the quotient must have real coefficients.]