
Math 461 Spring 2015
Homework 1 Solutions Drew Armstrong

1. In al-Khwarizmi’s solution of quadratic equations he needed to solve the following geometric
problem. Consider a line segment AB. Let C be its midpoint and let D be any other point
on the segment. Construct a square on AD and complete this to a rectangle on AB. There
are two different ways this could look (see the solid lines):

In both cases give a geometric argument that the area of the solid rectangle on DB plus the
area of the square on CD equals the area of the square on AC. [Hint: Divide the diagrams by
the suggested dotted lines. The Greek letters represent different areas in the two diagrams.]

First we consider the diagram on the left. We are asked to show that

(β + δ) + (γ) = (α+ β + β + γ).

Indeed, since C is the midpoint of AB we note that area α + β equals area δ, because they
are both half of the solid rectangle on AB. Hence

(α+ β + β + γ) = (α+ β) + β + δ

= δ + β + γ

= (β + δ) + (γ).

Next we consider the diagram on the right. We are asked to show that

(δ + ε) + (γ) = (α).

Indeed, since C is the midpoint of AB we note that area α + β equals area β + γ + δ + ε,
because they are both half of the solid rectangle on AB. Hence

α+ β = β + γ + δ + ε

α = γ + δ + ε

(α) = (γ) + (δ + ε).

///

2. Consider the quadratic equation (x− r)(x− s) = 0, where r and s are constants.

(a) Show that the discriminant of this equation is (r − s)2.
(b) Show that the discriminant is zero if and only if r = s.



(a) First we expand the polynomial to obtain

(x− r)(x− s) = 0

x2 − rx− sx+ rs = 0

x2 − (r + s)x+ (rs) = 0.

Thus the discriminant is

(−(r + s))2 − 4 · 1 · (rs) = (r + s)2 − 4rs

= r2 + 2rs+ s2 − 4rs

= r2 − 2rs+ s2

= (r − s)2.

(b) If r = s then we have r − s = 0 and hence (r − s)2 = 02 = 0. Conversely, suppose that
(r − s)2 = (r − s)(r − s) = 0. This implies that either (r − s) = 0 or (r − s) = 0. In either
case, we have r − s = 0, and hence r = s. ///

[Remark: We call r and s the roots of the equation (and this is why I chose the letter “r”). We
have just shown that the discriminant of a quadratic is zero if and only if the two roots are equal.
In the past we have seen quadratics with negative discriminant. How could the number (r − s)2
ever be negative?]

3. Suppose that the quadratic equation x2 +px+ q = 0 has solutions x = r and x = s. Find a
quadratic equation with solutions x = 1/r and x = 1/s. [Hint: Use (x−r)(x−s) = x2+px+q
to express p and q in terms of r and s. Now consider (x− 1/r)(x− 1/s).]

Suppose the equation x2 + px + q = 0 has solutions x = r and x = s. Then by Descartes’
Factor Theorem we know that

x2 + px+ q = (x− r)(x− s) = x2 − (r + s)x+ rs.

From this it follows that p = −(r + s) and q = rs. [Why?] Now we wish to find a quadratic
equation with solutions x = 1/r and x = 1/s. The most obvious such equation is

(x− 1/r)(x− 1/s) = 0.

To find the coefficients of this equation we expand:

(x− 1/r)(x− 1/s) = x2 −
(

1

r
+

1

s

)
x+

1

rs

= x2 −
(
r + s

rs

)
x+

1

rs

= x2 +
p

q
x+

1

q
.

Thus our equation has the form

x2 +
p

q
x+

1

q
= 0

qx2 + px+ 1 = 0.

///

[Remark: Note that we just reversed the coefficients of the original polynomial. Try to show that
reversing the coefficients is always the same as inverting the roots of a polynomial equation.]



4. Factor the following cubic polynomials as f(x) = (x − r)(x − s)(x − t) by: (1) guessing a
solution to f(x) = 0, (2) using long division, (3) using the quadratic formula.

(a) f(x) = x3 − 3x2 + x+ 1
(b) f(x) = x3 − 1

(a) First we observe that f(1) = 1− 3 + 1 + 1 = 0. Next we divide f(x) by (x− 1) to get

x2 − 2x− 1

x− 1
)

x3 − 3x2 + x+ 1
− x3 + x2

− 2x2 + x
2x2 − 2x

− x+ 1
x− 1

0

The remainder is zero, as guaranteed by Descartes’ Factor Theorem. Now we have f(x) =
(x − 1)x2 − 2x − 1. In order to factor x2 − 2x − 1 we apply the Quadratic Formula. The
equation x2 − 2x− 1 = 0 has solutions

x =
2±
√

8

2
=

2± 2
√

2

2
= 1±

√
2.

(Here I use
√

2 to represent the positive square root of 2.) Descartes’ Factor Theorem now
tells us that

x2 − 2x− 1 = (x− (1 +
√

2))(x− (1−
√

2)) = (x− 1−
√

2)(x− 1 +
√

2).

In conclusion, we have

x3 − 3x2 + x+ 1 = (x− 1)(x− 1−
√

2)(x− 1 +
√

2).

///
(b) First we observe that f(1) = 1− 1 = 0. Next we divide f(x) by (x− 1) to obtain

x2 + x+ 1

x− 1
)

x3 − 1
− x3 + x2

x2

− x2 + x

x− 1
− x+ 1

0

The remainder is zero, as guaranteed by Descartes’ Factor Theorem. Now we have f(x) =
(x − 1)(x2 + x + 1). In order to factor x2 + x + 1 we apply the Quadratic Formula. The
equation x2 + x+ 1 = 0 has solutions

x =
−1±

√
−3

2
,

which implies that

x2 + x+ 1 =

(
x− −1 +

√
−3

2

)(
x− −1−

√
−3

2

)
.



(Here I use
√
−3 to represent one of the two square roots of −3. I don’t care which one, and

I don’t care if this even makes sense. You may check that the algebra works out in any case.)
In conclusion, we have

x3 − 1 = (x− 1)

(
x− −1 +

√
−3

2

)(
x− −1−

√
−3

2

)
.

///

[Remark: That last factorization is certainly a true algebraic statement. However, it is less clear
what meaning we should attach to the symbol

√
−3.]

5. Consider the following diagram from Descartes’ La Géométrie (1637). Prove that the
distances MQ and MR are solutions to the quadratic equation y2 + b2 = ay.

There are various geometric ways to do this. The easiest way is to consider point M as the
origin (0, 0) of a Cartesian plane. Recall that the equation of a circle with radius ρ and center
(α, β) is

(x− α)2 + (y − β)2 = ρ2.

Our circle has center (−b, a/2) and radius a/2, so it has equation

(x+ b)2 + (y − a/2)2 = (a/2)2.

The equation of the line connecting Q and R is just x = 0. To compute the intersection of
the line and circle we substitute x = 0 into the equation of the circle to get

(0− b)2 + (y − a/2)2 = (a/2)2

b2 + y2 − ay + (a/2)2 = (a/2)2

b2 + y2 − ay = 0

y2 + b2 = ay.

The solutions of this equation are the y-coordinates of the points Q and R, i.e., their distances
from the origin M . ///

[Remark: The solutions of y2 + b2 = ay are y = (−a±
√
a2 − 4b2)/2. If the discriminant a2− 4b2

is ≥ 0, then we can visualize this solution in terms of the points of intersection of the circle and
line. If a2 − 4b2 < 0 then the line and circle don’t intersect. Or do they?]


