Math 461 Spring 2015
Homework 1 Solutions Drew Armstrong

1. In al-Khwarizmi’s solution of quadratic equations he needed to solve the following geometric
problem. Consider a line segment AB. Let C be its midpoint and let D be any other point
on the segment. Construct a square on AD and complete this to a rectangle on AB. There
are two different ways this could look (see the solid lines):

A D C B A C D B

In both cases give a geometric argument that the area of the solid rectangle on DB plus the
area of the square on C'D equals the area of the square on AC. [Hint: Divide the diagrams by
the suggested dotted lines. The Greek letters represent different areas in the two diagrams.]

First we consider the diagram on the left. We are asked to show that

B+o)+(v)=(a+B+B+7).
Indeed, since C' is the midpoint of AB we note that area o 4+ § equals area J, because they
are both half of the solid rectangle on AB. Hence
(a+B+pB+7)=(a+B)+5+6
=0+ B+y
= (B+0)+ (7)-
Next we consider the diagram on the right. We are asked to show that
(+2)+ () = (@),
Indeed, since C' is the midpoint of AB we note that area o + [ equals area 8+ v + § + ¢,
because they are both half of the solid rectangle on AB. Hence
a+B=B+7v+d0+e¢
a=v+0d+¢
() = () + (0 +e).
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2. Consider the quadratic equation (x — r)(x — s) = 0, where r and s are constants.

(a) Show that the discriminant of this equation is (r — s)2.

(b) Show that the discriminant is zero if and only if r = s.



(a) First we expand the polynomial to obtain
(x—r)(x—s)=0
22 —rz—sr+rs=0
2% — (r+8)x + (rs) = 0.
Thus the discriminant is
(—(r+s)2—=4-1-(rs) = (r+s)> —4rs
=72 4+ 2rs + 52 — drs
=72 —2rs+s°
= (r—s)2
(b) If 7 = s then we have r — s = 0 and hence (r — 5)? = 02 = 0. Conversely, suppose that

(r —s)? = (r — s)(r — s) = 0. This implies that either (r — s) = 0 or (r — s) = 0. In either
case, we have r — s = 0, and hence r = s. ///

[Remark: We call r and s the roots of the equation (and this is why | chose the letter “r"). We
have just shown that the discriminant of a quadratic is zero if and only if the two roots are equal.
In the past we have seen quadratics with negative discriminant. How could the number (r — 5)?
ever be negative?]

3. Suppose that the quadratic equation 22 + pz + ¢ = 0 has solutions z = r and z = s. Find a
quadratic equation with solutions z = 1/r and = 1/s. [Hint: Use (x—7)(x—s) = 22 +pr+q
to express p and ¢ in terms of r and s. Now consider (x — 1/7)(x — 1/s).]

Suppose the equation 22 + pz 4+ ¢ = 0 has solutions = r and 2 = s. Then by Descartes’
Factor Theorem we know that

P 4prtqg=(r—r)(r—s) =2~ (r+s)z+rs.

From this it follows that p = —(r + s) and ¢ = rs. [Why?] Now we wish to find a quadratic
equation with solutions z = 1/r and = 1/s. The most obvious such equation is

(x—=1/r)(x—1/s) =0.

To find the coefficients of this equation we expand:

r s rs
9 (r + s) 1
= — x _|_ -
rs rs
1
=2+ Bl’ + -
q
Thus our equation has the form
1
2+lrr =0
q q

qw2+pm—|—1:O.
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[Remark: Note that we just reversed the coefficients of the original polynomial. Try to show that
reversing the coefficients is always the same as inverting the roots of a polynomial equation.]



4. Factor the following cubic polynomials as f(z) = (x —r)(z — s)(x — t) by: (1) guessing a
solution to f(z) =0, (2) using long division, (3) using the quadratic formula.

(a) f(x) =23 -322+2+1

(b) flz) =a®—1

(a) First we observe that f(1) =1—-3+ 1+ 1= 0. Next we divide f(x) by (x — 1) to get

22— 2 —1
x—l) 23 =322 +ax+1
— 3 + a2
— 222 4+
222 — 2x
—z+1
r—1
0

The remainder is zero, as guaranteed by Descartes’ Factor Theorem. Now we have f(z) =
(r — 1)2% — 22 — 1. In order to factor 2 — 2z — 1 we apply the Quadratic Formula. The
equation 2 — 2z — 1 = 0 has solutions

24+ 2+ 22

(Here T use v/2 to represent the positive square root of 2.) Descartes’ Factor Theorem now
tells us that

=2 —1=(2—-14+V2))(z-(1-v2)=(x—-1-V2)(z—1+V2).
In conclusion, we have

=3kt r4+1=(z-1D(z—-1-V2)(z—1+V2).

x
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(b) First we observe that f(1) =1—1 = 0. Next we divide f(z) by (z — 1) to obtain

22 +r+1

x—l) a3 -1
—:U3+x2
22

—x2+x

r—1

—z+1

0

The remainder is zero, as guaranteed by Descartes’ Factor Theorem. Now we have f(x) =
(r — 1)(2® + 2 + 1). In order to factor 22 + = + 1 we apply the Quadratic Formula. The
equation 22 + = + 1 = 0 has solutions

€r =

—14++v-3
2 )
which implies that

P +r4+1= (x—_lg\/j?’) (x—_l_z‘/j?’>



(Here I use /—3 to represent one of the two square roots of —3. I don’t care which one, and
I don’t care if this even makes sense. You may check that the algebra works out in any case.)
In conclusion, we have

x?’l:(acl)(x_l—;\/jg) <x_1_2\/j3>
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[Remark: That last factorization is certainly a true algebraic statement. However, it is less clear
what meaning we should attach to the symbol v/—3.]

5. Consider the following diagram from Descartes’ La Géométrie (1637). Prove that the
distances M Q and MR are solutions to the quadratic equation y? + b = ay.

L b M

There are various geometric ways to do this. The easiest way is to consider point M as the
origin (0,0) of a Cartesian plane. Recall that the equation of a circle with radius p and center

(a, B) is
(=)’ +(y = B)* = p*.
Our circle has center (—b,a/2) and radius a/2, so it has equation
(x+0)*+ (y — a/2)* = (a/2)*.
The equation of the line connecting Q and R is just x = 0. To compute the intersection of
the line and circle we substitute = 0 into the equation of the circle to get

(0—6)*+ (y — a/2)” = (a/2)?
b +y° —ay + (a/2)? = (a/2)?
b+ y? —ay=0
v+ b2 = ay.
The solutions of this equation are the y-coordinates of the points ) and R, i.e., their distances

from the origin M. ///

[Remark: The solutions of y2 4+ b? = ay are y = (—a £ v/a? — 4b2)/2. If the discriminant a? — 4b?
is > 0, then we can visualize this solution in terms of the points of intersection of the circle and
line. If a® — 4b? < 0 then the line and circle don't intersect. Or do they?]



