1. In al-Khwarizmi's solution of quadratic equations he needed to solve the following geometric problem. Consider a line segment $A B$. Let C be its midpoint and let D be any other point on the segment. Construct a square on $A D$ and complete this to a rectangle on $A B$. There are two different ways this could look (see the solid lines):

In both cases give a geometric argument that the area of the solid rectangle on $D B$ plus the area of the square on $C D$ equals the area of the square on $A C$. [Hint: Divide the diagrams by the suggested dotted lines. The Greek letters represent different areas in the two diagrams.]

First we consider the diagram on the left. We are asked to show that

$$
(\beta+\delta)+(\gamma)=(\alpha+\beta+\beta+\gamma)
$$

Indeed, since C is the midpoint of $A B$ we note that area $\alpha+\beta$ equals area δ, because they are both half of the solid rectangle on $A B$. Hence

$$
\begin{aligned}
(\alpha+\beta+\beta+\gamma) & =(\alpha+\beta)+\beta+\delta \\
& =\delta+\beta+\gamma \\
& =(\beta+\delta)+(\gamma) .
\end{aligned}
$$

Next we consider the diagram on the right. We are asked to show that

$$
(\delta+\varepsilon)+(\gamma)=(\alpha)
$$

Indeed, since C is the midpoint of $A B$ we note that area $\alpha+\beta$ equals area $\beta+\gamma+\delta+\varepsilon$, because they are both half of the solid rectangle on $A B$. Hence

$$
\begin{aligned}
\alpha+\beta & =\beta+\gamma+\delta+\varepsilon \\
\alpha & =\gamma+\delta+\varepsilon \\
(\alpha) & =(\gamma)+(\delta+\varepsilon) .
\end{aligned}
$$

2. Consider the quadratic equation $(x-r)(x-s)=0$, where r and s are constants.
(a) Show that the discriminant of this equation is $(r-s)^{2}$.
(b) Show that the discriminant is zero if and only if $r=s$.
(a) First we expand the polynomial to obtain

$$
\begin{aligned}
(x-r)(x-s) & =0 \\
x^{2}-r x-s x+r s & =0 \\
x^{2}-(r+s) x+(r s) & =0 .
\end{aligned}
$$

Thus the discriminant is

$$
\begin{aligned}
(-(r+s))^{2}-4 \cdot 1 \cdot(r s) & =(r+s)^{2}-4 r s \\
& =r^{2}+2 r s+s^{2}-4 r s \\
& =r^{2}-2 r s+s^{2} \\
& =(r-s)^{2} .
\end{aligned}
$$

(b) If $r=s$ then we have $r-s=0$ and hence $(r-s)^{2}=0^{2}=0$. Conversely, suppose that $(r-s)^{2}=(r-s)(r-s)=0$. This implies that either $(r-s)=0$ or $(r-s)=0$. In either case, we have $r-s=0$, and hence $r=s$.
[Remark: We call r and s the roots of the equation (and this is why I chose the letter " r "). We have just shown that the discriminant of a quadratic is zero if and only if the two roots are equal. In the past we have seen quadratics with negative discriminant. How could the number $(r-s)^{2}$ ever be negative?]
3. Suppose that the quadratic equation $x^{2}+p x+q=0$ has solutions $x=r$ and $x=s$. Find a quadratic equation with solutions $x=1 / r$ and $x=1 / s$. [Hint: Use $(x-r)(x-s)=x^{2}+p x+q$ to express p and q in terms of r and s. Now consider $(x-1 / r)(x-1 / s)$.]

Suppose the equation $x^{2}+p x+q=0$ has solutions $x=r$ and $x=s$. Then by Descartes' Factor Theorem we know that

$$
x^{2}+p x+q=(x-r)(x-s)=x^{2}-(r+s) x+r s .
$$

From this it follows that $p=-(r+s)$ and $q=r s$. [Why?] Now we wish to find a quadratic equation with solutions $x=1 / r$ and $x=1 / s$. The most obvious such equation is

$$
(x-1 / r)(x-1 / s)=0 .
$$

To find the coefficients of this equation we expand:

$$
\begin{aligned}
(x-1 / r)(x-1 / s) & =x^{2}-\left(\frac{1}{r}+\frac{1}{s}\right) x+\frac{1}{r s} \\
& =x^{2}-\left(\frac{r+s}{r s}\right) x+\frac{1}{r s} \\
& =x^{2}+\frac{p}{q} x+\frac{1}{q} .
\end{aligned}
$$

Thus our equation has the form

$$
\begin{aligned}
& x^{2}+\frac{p}{q} x+\frac{1}{q}=0 \\
& q x^{2}+p x+1=0 .
\end{aligned}
$$

[Remark: Note that we just reversed the coefficients of the original polynomial. Try to show that reversing the coefficients is always the same as inverting the roots of a polynomial equation.]
4. Factor the following cubic polynomials as $f(x)=(x-r)(x-s)(x-t)$ by: (1) guessing a solution to $f(x)=0$, (2) using long division, (3) using the quadratic formula.
(a) $f(x)=x^{3}-3 x^{2}+x+1$
(b) $f(x)=x^{3}-1$
(a) First we observe that $f(1)=1-3+1+1=0$. Next we divide $f(x)$ by $(x-1)$ to get

$$
x-1) \begin{array}{r}
\frac{x^{2}-2 x-1}{x^{3}-3 x^{2}+x+1} \\
-x^{3}+x^{2} \\
\hline-2 x^{2}+x \\
\frac{2 x^{2}-2 x}{} \\
\begin{array}{r}
-x+1 \\
x-1
\end{array}
\end{array}
$$

The remainder is zero, as guaranteed by Descartes' Factor Theorem. Now we have $f(x)=$ $(x-1) x^{2}-2 x-1$. In order to factor $x^{2}-2 x-1$ we apply the Quadratic Formula. The equation $x^{2}-2 x-1=0$ has solutions

$$
x=\frac{2 \pm \sqrt{8}}{2}=\frac{2 \pm 2 \sqrt{2}}{2}=1 \pm \sqrt{2} .
$$

(Here I use $\sqrt{2}$ to represent the positive square root of 2.) Descartes' Factor Theorem now tells us that

$$
x^{2}-2 x-1=(x-(1+\sqrt{2}))(x-(1-\sqrt{2}))=(x-1-\sqrt{2})(x-1+\sqrt{2}) .
$$

In conclusion, we have

$$
x^{3}-3 x^{2}+x+1=(x-1)(x-1-\sqrt{2})(x-1+\sqrt{2}) .
$$

(b) First we observe that $f(1)=1-1=0$. Next we divide $f(x)$ by $(x-1)$ to obtain

$$
x-1) \begin{array}{r}
\frac{x^{2}+x+1}{x^{3}} \begin{array}{r}
-1 \\
-x^{3}+x^{2} \\
x^{2} \\
\frac{-x^{2}+x}{x-1} \\
\frac{-x+1}{0}
\end{array}
\end{array}
$$

The remainder is zero, as guaranteed by Descartes' Factor Theorem. Now we have $f(x)=$ $(x-1)\left(x^{2}+x+1\right)$. In order to factor $x^{2}+x+1$ we apply the Quadratic Formula. The equation $x^{2}+x+1=0$ has solutions

$$
x=\frac{-1 \pm \sqrt{-3}}{2},
$$

which implies that

$$
x^{2}+x+1=\left(x-\frac{-1+\sqrt{-3}}{2}\right)\left(x-\frac{-1-\sqrt{-3}}{2}\right) .
$$

(Here I use $\sqrt{-3}$ to represent one of the two square roots of -3 . I don't care which one, and I don't care if this even makes sense. You may check that the algebra works out in any case.) In conclusion, we have

$$
x^{3}-1=(x-1)\left(x-\frac{-1+\sqrt{-3}}{2}\right)\left(x-\frac{-1-\sqrt{-3}}{2}\right) .
$$

[Remark: That last factorization is certainly a true algebraic statement. However, it is less clear what meaning we should attach to the symbol $\sqrt{-3}$.]
5. Consider the following diagram from Descartes' La Géométrie (1637). Prove that the distances $M Q$ and $M R$ are solutions to the quadratic equation $y^{2}+b^{2}=a y$.

There are various geometric ways to do this. The easiest way is to consider point M as the origin $(0,0)$ of a Cartesian plane. Recall that the equation of a circle with radius ρ and center (α, β) is

$$
(x-\alpha)^{2}+(y-\beta)^{2}=\rho^{2} .
$$

Our circle has center $(-b, a / 2)$ and radius $a / 2$, so it has equation

$$
(x+b)^{2}+(y-a / 2)^{2}=(a / 2)^{2} .
$$

The equation of the line connecting Q and R is just $x=0$. To compute the intersection of the line and circle we substitute $x=0$ into the equation of the circle to get

$$
\begin{aligned}
(0-b)^{2}+(y-a / 2)^{2} & =(a / 2)^{2} \\
b^{2}+y^{2}-a y+(a / 2)^{2} & =(a / 2)^{2} \\
b^{2}+y^{2}-a y & =0 \\
y^{2}+b^{2} & =a y .
\end{aligned}
$$

The solutions of this equation are the y-coordinates of the points Q and R, i.e., their distances from the origin M.
[Remark: The solutions of $y^{2}+b^{2}=a y$ are $y=\left(-a \pm \sqrt{a^{2}-4 b^{2}}\right) / 2$. If the discriminant $a^{2}-4 b^{2}$ is ≥ 0, then we can visualize this solution in terms of the points of intersection of the circle and line. If $a^{2}-4 b^{2}<0$ then the line and circle don't intersect. Or do they?]

