1. In al-Khwarizmi's solution of quadratic equations he needed to solve the following geometric problem. Consider a line segment $A B$. Let C be its midpoint and let D be any other point on the segment. Construct a square on $A D$ and complete this to a rectangle on $A B$. There are two different ways this could look (see the solid lines):

In both cases give a geometric argument that the area of the solid rectangle on $D B$ plus the area of the square on $C D$ equals the area of the square on $A C$. [Hint: Divide the diagrams by the suggested dotted lines. The Greek letters represent different areas in the two diagrams.]
2. Consider the quadratic equation $(x-r)(x-s)=0$, where r and s are constants.
(a) Show that the discriminant of this equation is $(r-s)^{2}$.
(b) Show that the discriminant is zero if and only if $r=s$.
3. Suppose that the quadratic equation $x^{2}+p x+q=0$ has solutions $x=r$ and $x=s$. Find a quadratic equation with solutions $x=1 / r$ and $x=1 / s$. [Hint: Use $(x-r)(x-s)=x^{2}+p x+q$ to express p and q in terms of r and s. Now consider $(x-1 / r)(x-1 / s)$.]
4. Factor the following cubic polynomials as $f(x)=(x-r)(x-s)(x-t)$ by: (1) guessing a solution to $f(x)=0$, (2) using long division, (3) using the quadratic formula.
(a) $f(x)=x^{3}-3 x^{2}+x+1$
(b) $f(x)=x^{3}-1$
5. Consider the following diagram from Descartes' La Géométrie (1637). Prove that the distances $M Q$ and $M R$ are solutions to the quadratic equation $y^{2}+b^{2}=a y$.

