Math 461
Exam 2 (Wed Mar 25)

Spring 2015
Drew Armstrong

There are 3 problems with 12 parts. Each part is worth 2 points for a total of 24 points. If two exams are submitted with copied answers then both exams will receive 0 points.

1. Complex Numbers.

(a) Let $z \in \mathbb{C}$. Write a formula for z^{-1} in terms of the complex conjugate z^{*}.

We "rationalize the denominator" to get

$$
z^{-1}=\frac{1}{z}=\frac{1}{z} \cdot \frac{z^{*}}{z^{*}}=\frac{z^{*}}{z z^{*}}=\frac{z^{*}}{|z|^{2}}
$$

(b) Draw the complex conjugate and the inverse of the given complex number. [Hint: The unit circle is shown.]

(c) Draw the sum and product of the two given complex numbers. [Hint: The unit circle is shown.]

2. De Moivre's Formula.

(a) Accurately state de Moivre's Formula.

For all integers n and real numbers θ we have

$$
(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)
$$

(b) Use de Moivre's Formula to express $\cos (2 \theta)$ as a function of $\cos (\theta)$.

De Moivre's Formula says

$$
\begin{aligned}
\cos (2 \theta)+i \sin (2 \theta) & =(\cos \theta+i \sin \theta)^{2} \\
& =\cos ^{2} \theta+2 i \sin \theta \cos \theta+i^{2} \sin ^{2} \theta \\
& =\left(\cos ^{2} \theta-\sin ^{2} \theta\right)+i(2 \sin \theta \cos \theta)
\end{aligned}
$$

Then comparing real parts gives

$$
\begin{aligned}
\cos (2 \theta) & =\cos ^{2} \theta-\sin ^{2} \theta \\
& =\cos ^{2} \theta-\left(1-\cos ^{2} \theta\right) \\
& =2 \cos ^{2} \theta-1 .
\end{aligned}
$$

(c) Given the fact that $\cos (2 \pi / 5)=\frac{-1+\sqrt{5}}{4}$, use part (b) to compute the value of $\cos (4 \pi / 5)$.

Substituting $\theta=2 \pi / 5$ into the formula from part (b) gives

$$
\begin{aligned}
\cos (4 \pi / 5) & =2 \cos ^{2}(2 \pi / 5)-1 \\
& =2\left(\frac{-1+\sqrt{5}}{4}\right)^{2}-1 \\
& =2\left(\frac{1-2 \sqrt{5}+5}{16}\right)-1 \\
& =\frac{6-2 \sqrt{5}}{8}-\frac{8}{8} \\
& =\frac{-2-2 \sqrt{5}}{8} \\
& =\frac{-1-\sqrt{5}}{4}
\end{aligned}
$$

3. Roots of Unity. Throughout this problem, let $\omega=e^{2 \pi i / 5}$.
(a) Label the vertices of the following regular pentagon with powers of ω. [Hint: The unit circle is shown.]

There are infinitely many possible answers. Here is one.

(b) Factor $x^{5}-1$ over the complex numbers.

$$
x^{5}-1=(x-1)(x-\omega)\left(x-\omega^{-1}\right)\left(x-\omega^{2}\right)\left(x-\omega^{-2}\right)
$$

(c) List the primitive 5th roots of unity.

The primitive 5th roots of unity are $\omega, \omega^{-1}, \omega^{2}, \omega^{-2}$.
(d) Factor $1+x+x^{2}+x^{3}+x^{4}$ over the complex numbers.

$$
1+x+x^{2}+x^{3}+x^{4}=(x-\omega)\left(x-\omega^{-1}\right)\left(x-\omega^{2}\right)\left(x-\omega^{-2}\right)
$$

(e) Expand the product $(x-\omega)\left(x-\omega^{-1}\right)$. [Hint: $\cos (2 \pi / 5)=(-1+\sqrt{5}) / 4$.]

We have

$$
\begin{aligned}
(x-\omega)\left(x-\omega^{-1}\right) & =x^{2}-\left(\omega+\omega^{-1}\right) x+\omega \omega^{-1} \\
& =x^{2}-2 \cos (2 \pi / 5) x+1 \\
& =x^{2}-2\left(\frac{-1-\sqrt{5}}{4}\right) x+1 \\
& =x^{2}-\frac{-1-\sqrt{5}}{2} x+1 .
\end{aligned}
$$

(f) Factor $1+x+x^{2}+x^{3}+x^{4}$ over the real numbers. Your final answer should not involve sines or cosines.

From 3(d), 3(e), and 2(c), we have

$$
\begin{aligned}
1+x+x^{2}+x^{3}+x^{4} & =(x-\omega)\left(x-\omega^{-1}\right)\left(x-\omega^{2}\right)\left(x-\omega^{-2}\right) \\
& =\left(x^{2}-\left(\omega+\omega^{-1}\right) x+\omega \omega^{-1}\right)\left(x^{2}-\left(\omega^{2}+\omega^{-2}\right) x+\omega^{2} \omega^{-2}\right) \\
& =\left(x^{2}-2 \cos (2 \pi / 5) x+1\right)\left(x^{2}-2 \cos (4 \pi / 5) x+1\right) \\
& =\left(x^{2}-\frac{-1-\sqrt{5}}{2} x+1\right)\left(x^{2}-\frac{-1+\sqrt{5}}{2} x+1\right) .
\end{aligned}
$$

