There are 4 problems, each with 3 parts. Each part is worth 2 points, for a total of 24 points. If any two exams are submitted with copied answers then both exams will receive 0 points.

1. Division With Remainder.

(a) Let \mathbb{F} be a field. Correctly state the Division Theorem for the ring $\mathbb{F}[x]$.

Given any polynomials $f(x), g(x) \in \mathbb{F}[x]$ with $g(x) \neq 0$, there exist unique polynomials $q(x), r(x) \in \mathbb{F}[x]$ such that

- $f(x)=q(x) g(x)+r(x)$, and
- $r(x)=0$ or $\operatorname{deg}(r)<\operatorname{deg}(g)$.
(b) Divide $\left(x^{3}-4 x^{2}+2 x+4\right)$ by $(x-2)$ using long division.

$$
x-2) \begin{array}{r}
\frac{x^{2}-2 x-2}{x^{3}-4 x^{2}+2 x+4} \\
-x^{3}+2 x^{2} \\
-2 x^{2}+2 x \\
\frac{2 x^{2}-4 x}{} \\
-2 x+4 \\
-2 x-4
\end{array}
$$

(c) Use the result of (b) to express $\left(x^{3}-4 x^{2}+2 x+4\right)$ in the form $(x-r)(x-s)(x-t)$ for some r, s, t.

Part (b) tells us that $\left(x^{3}-4 x^{2}+2 x+4\right)=(x-2)\left(x^{2}-2 x-2\right)$. In order to factor $\left(x^{2}-2 x-2\right)$ we used the Quadratic Formula to solve $x^{2}-2 x-2=0$:

$$
x=\frac{2 \pm \sqrt{(-2)^{2}-4(-2)}}{2}=\frac{2 \pm \sqrt{12}}{2}=\frac{2 \pm 2 \sqrt{3}}{2}=1 \pm \sqrt{3} .
$$

We conclude that

$$
\left(x^{3}-4 x^{2}+2 x+4\right)=(x-2)(x-1-\sqrt{3})(x-1+\sqrt{3}) .
$$

2. Multiplying Polynomials. Consider the two polynomials

$$
f(x)=\sum_{k \geq 0} a_{k} x^{k} \quad \text { and } \quad g(x)=\sum_{k \geq 0} b_{k} x^{k} .
$$

(a) Write a formula for the coefficient of x^{k} in the product $f(x) g(x)$.

$$
a_{0} b_{k}+a_{1} b_{k-1}+\cdots+a_{k-1} b_{1}+a_{k} b_{0} \quad \text { or } \quad \sum_{i+j=k} a_{i} b_{j} \quad \text { or } \quad \sum_{i=0}^{k} a_{i} b_{k-i} .
$$

(b) If $i+j>m+n$, prove that either $i>m$ or $j>n$ (or both).

Recall that the contrapositive of "if P then Q " is the statement "if not Q then not P ", and that these two statements are logically equivalent. In our case $P=" i+j>m+n$ " and $Q=" i>m$ or $j>n$ ". We will prove the contrapositive: Suppose that Q is not true, i.e., suppose that $i \leq m$ and $j \leq n$. If then follows that $i+j \leq m+n$, which implies that P is not true. Done.
(c) Now assume that $a_{i}=0$ for all $i>m$ and $b_{j}=0$ for all $j>n$. Use parts (a) and (b) to prove that the coefficient of x^{k} in $f(x) g(x)$ is zero for all $k>m+n$.

Assume that $a_{i}=0$ for all $i>m$ and $b_{j}=0$ for all $j>n$. If $i+j>m+n$ then by (b) we have $a_{i}=0$ or $b_{j}=0$, and hence $a_{i} b_{j}=0$. The coefficient of x^{k} in $f(x) g(x)$ is, by part (a),

$$
\sum_{i+j=k} a_{i} b_{j} .
$$

If $k>m+n$, then each term in this sum is zero.

3. Cardano's Formula.

(a) What change of variables will convert the general cubic equation $a x^{3}+b x^{2}+c x+d=0$ into a depressed cubic equation?

Substitute $x=y-b / 3 a$.
(b) Tell me Cardano's Formula for the solution of the depressed cubic $x^{3}+p x+q=0$.

$$
x=\sqrt[3]{-\left(\frac{q}{2}\right)+\sqrt{\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3}}}+\sqrt[3]{-\left(\frac{q}{2}\right)-\sqrt{\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3}}}
$$

(c) Use Cardano's Formula to find a solution to the equation $x^{3}-6 x-6=0$.

In this case we have $q / 2=-3$ and $p / 3=-2$, hence

$$
\begin{aligned}
x & =\sqrt[3]{-\left(\frac{q}{2}\right)+\sqrt{\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3}}}+\sqrt[3]{-\left(\frac{q}{2}\right)-\sqrt{\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3}}} \\
& =\sqrt[3]{3+\sqrt{(-3)^{2}+(-2)^{3}}}+\sqrt[3]{3-\sqrt{(-3)^{2}+(-2)^{3}}} \\
& =\sqrt[3]{3+\sqrt{9-8}}+\sqrt[3]{3-\sqrt{9-8}} \\
& =\sqrt[3]{4}+\sqrt[3]{2} \\
& \approx 2.847
\end{aligned}
$$

4. Descartes' Theorem. Let \mathbb{F} be a field and consider a polynomial $f(x) \in \mathbb{F}[x]$ of degree 2. Assume that $f(x)$ has two distinct roots $r, s \in \mathbb{F}$.
(a) Prove that $(x-r)$ divides $f(x)$ with remainder 0 . Let $g(x)$ be the quotient.

By the Division Theorem (Problem 1(a)) we have

$$
f(x)=(x-r) g(x)+R(x)
$$

where either $R(x)=0$ or $\operatorname{deg}(R)<\operatorname{deg}(x-r)=1$. In either case, $R(x)$ must be a constant. Call it R. Then evaluate $f(x)$ at r to get

$$
0=f(r)=(r-r) g(r)+R=0 \cdot g(r)+R=R .
$$

We conclude that the remainder is zero.
(b) Explain why $g(s)=0$.

From part (a) we have $f(x)=(x-r) g(x)$. Evaluating $f(x)$ at s gives

$$
0=f(s)=(s-r) g(s) .
$$

Since (by assumption) $s-r \neq 0$, we conclude that $g(s)=0$.
(c) Prove that $g(x)=a(x-s)$ for some nonzero constant $a \in \mathbb{F}$.

Since $f(x)=(x-r) g(x)$ and $\operatorname{deg}(f)=2$, we conclude that $\operatorname{deg}(g)=1$. Then since $g(s)=0$, we apply the same argument as in part (a) to show that

$$
g(x)=(x-s) h(x)
$$

for some polynomial $h(x)$. Comparing degrees again gives $\operatorname{deg}(h)=0$. In other words, $h(x)$ is a nonzero constant. Call it a if you like.
[Many people assumed at the outset that $f(x)=a(x-r)(x-s)$, quoting a result from class. Since I guess I didn't explicitly tell you not to do this, these people received half points (minus any further mistakes).]

The average for this exam was $18.3 / 25$ and the median was $18 / 25$. Out of 40 students, 6 received a score of 23 or above. I do not assign letter grades for exams, but I estimate the following approximate grade ranges:

$$
\begin{aligned}
& 21-25 \approx A(13 \text { students }) \\
& 17-20 \approx B(16 \text { students }) \\
& 10-16 \approx C(11 \text { students })
\end{aligned}
$$

