## Quadratic Field Extensions

Drew Armstrong

Let $F$ be a field and let $c \in F$ be an element such that $\sqrt{c} \notin F$. (This notation means that the equation $x^{2}-c=0$ has no solution in $F$.) In this case we can define a new, bigger number system

$$
F[\sqrt{c}]:=\{a+b \sqrt{c}: a, b \in F\}
$$

which we call " $F$ adjoin $\sqrt{c}$ ". We have already seen an important example of this. The complex numbers are just the same as $\mathbb{R}$ adjoin $\sqrt{-1}$ :

$$
\mathbb{C}=\mathbb{R}[\sqrt{-1}]=\{a+b \sqrt{-1}: a, b \in \mathbb{R}\}
$$

You will agree by now that the complex numbers have remarkable and beautiful properties. So perhaps the same is true of $F[\sqrt{c}]$ ? Yes.

First note that we can divide in $F[\sqrt{c}]$. Given $a+b \sqrt{c} \in F[\sqrt{c}]$ we have

$$
\begin{aligned}
\frac{1}{a+b \sqrt{c}} & =\frac{1}{a+b \sqrt{c}} \cdot \frac{a-b \sqrt{c}}{a-b \sqrt{c}} \\
& =\frac{a-b \sqrt{c}}{a^{2}-c b^{2}} \\
& =\left(\frac{a}{a^{2}-c b^{2}}\right)+\left(\frac{-b}{a^{2}-c b^{2}}\right) \sqrt{c}
\end{aligned}
$$

which is again in $F[\sqrt{c}]$. We can multiply, add, and subtract elements of $F[\sqrt{c}]$ in the obvious way. Hence $F[\sqrt{c}]$ is itself a field. We will call the pair $F \subseteq F[\sqrt{c}]$ a quadratic field extension.

In the above proof we used the high-school technique of "rationalizing the denominator". More formally, we define a conjugation map $F[\sqrt{c}] \rightarrow F[\sqrt{c}]$ by

$$
\overline{a+b \sqrt{c}}:=a-b \sqrt{c}
$$

Just like complex conjugation, the map $v \mapsto \bar{v}$ preserves addition and multiplication. Please check that for all $u, v \in F[\sqrt{c}]$ we have

- $\overline{u+v}=\bar{u}+\bar{v}$, and
- $\overline{u v}=\bar{u} \bar{v}$.
(We say that $v \mapsto \bar{v}$ is an automorphism of the field $F[\sqrt{c}]$.)
Finally, we note that $F[\sqrt{c}]$ is (just like the complex numbers) really a two-dimensional vector space. Suppose that $a+b \sqrt{c}$ and $a^{\prime}+b^{\prime} \sqrt{c}$ are in $F[\sqrt{c}]$ with $a+b \sqrt{c}=a^{\prime}+b^{\prime} \sqrt{c}$. Then we have

$$
a-a^{\prime}=\left(b^{\prime}-b\right) \sqrt{c}
$$

If $b \neq b^{\prime}$ then we can divide both sides by $b^{\prime}-b$ to get

$$
\sqrt{c}=\frac{a-a^{\prime}}{b^{\prime}-b} \in F
$$

which is a contradiction because we assumed that $\sqrt{c}$ is not in $F$. Hence $b=b^{\prime}$ and consequently $a=a^{\prime}$. That is, the element $a+b \sqrt{c}$ acts very much like a vector $(a, b)$ with two coordinates. We could say that $F[\sqrt{c}]$ is isomorphic to the " $F$-plane" $F^{2}$.

Why did I bring this up now? Because quadratic extensions give us the correct way to discuss constructibility.

Fact. The real number $\alpha$ is constructible with straightedge and compass if and only if there exists a chain of quadratic extensions

$$
\mathbb{Q}=F_{0} \subseteq F_{1} \subseteq F_{2} \subseteq \cdots \subseteq F_{r} \subseteq \cdots \subseteq \mathbb{R}
$$

such that $\alpha \in F_{r}$. Let's say that $F_{k+1}=\left\{a+b \sqrt{c_{k}}: a, b \in F_{k}\right\}$, where $c_{k} \in F_{k}$ is some element such that $\sqrt{c_{k}} \notin F_{k}$. (We will assume that $c_{k}>0$ so that we always stay in $\mathbb{R}$.) In general, the elements of $F_{k}$ have more "nested" square root brackets as $k$ gets larger.

This interpretation immediately allows us to prove that $\sqrt[3]{2}$ is not constructible with straightedge and compass. Hence the ancient problem of "doubling the cube" is impossible. This result was (apparently) first proved by Descartes.

Theorem. The real cube root of 2 is not constructible.
Proof. Suppose (for contradiction) that $\sqrt[3]{2}$ is constructible. Then there exists a chain of quadratic extensions

$$
\mathbb{Q}=F_{0} \subseteq F_{1} \subseteq F_{2} \subseteq \cdots \subseteq \mathbb{R}
$$

such that $\sqrt[3]{2}$ is in $F_{i}$ for some $i$. Let $F_{k+1}$ be the minimum $F_{i}$ which contains $\sqrt[3]{2}$. (You will show on the homework that $k+1 \geq 1$.) Thus $\sqrt[3]{2}$ is in $F_{k+1}=F_{k}\left[\sqrt{c_{k}}\right]$, but not in $F_{k}$, and we can write $\sqrt[3]{2}=a+b \sqrt{c_{k}}$ for some $a, b \in F_{k}$ with $b \neq 0$ (why?). Observe that

$$
\left(a+b \sqrt{c_{k}}\right)^{3}-2=0 .
$$

Now consider the conjugation map for the quadratic extension $F_{k} \subseteq F_{k+1}$ and apply this to both sides of the equation to get

$$
\begin{aligned}
\left.\overline{\left(a+b \sqrt{c_{k}}\right.}\right)^{3}-2 & =\overline{0} \\
\left(\overline{a+b \sqrt{c_{k}}}\right)^{3}-\overline{2} & =\overline{0} \\
\left(a-b \sqrt{c_{k}}\right)^{3}-2 & =0 .
\end{aligned}
$$

In other words, $a-b \sqrt{c_{k}}$ is also a real cube root of 2 . Since there is only one real cube root of 2 (why?), we must have $a+b \sqrt{c_{k}}=a-b \sqrt{c_{k}}$, which implies that $b=-b$, or $b=0$. This is a contradiction.

