Math 461 F
Homework 6

Reading.

Section 6.4, 6.5

Book Problems.

6.4: $1,4,8$.

Additional Problems.

A.1. Euler showed that every real polynomial of the form $x^{4}+\alpha x^{2}+$ $\beta x+\gamma$ factors into two real quadratics. Use his result to prove that every real polynomial of the form $a x^{4}+b x^{3}+c x^{2}+d x+e$ factors into two real quadratics. (Hint: Use a change of variables to turn your polynomial into Euler's polynomial.)
A.2. Suppose that a given real quartic equation has roots a, b, c, d in some field $\mathbb{E} \supseteq \mathbb{R}$. (Today we know that these roots must be complex, but in times past their nature was mysterious.) Now let $f(a, b, c, d)$ be some function of a, b, c, d that is invariant under any permutation of the roots. Explain why $f(a, b, c, d)$ is a real number. (Hint: The Fundamental Theorem of Symmetric Functions.)
A.3. Let a, b, c, d be the roots of some real quartic equation with no x^{3} term (i.e. we have $a+b+c+d=0$.) Let $p=a+b, q=a+c$, and $r=a+d$, so that $-p=c+d,-q=b+d$, and $-r=b+c$. Prove that $p q r$ is a real number, and hence $-p^{2} q^{2} r^{2}$ is a negative real number. (Hint: Show that $p q r$ is invariant under permuting $a \leftrightarrow b$, or $a \leftrightarrow c$, or $a \leftrightarrow d$. Hence it's invariant under any permutation of a, b, c, d.)

