Problems.

A.1. Let $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in \mathbb{R}[x]$. If n is even, with $a_{n}>0$ and $a_{0}<0$, prove that $f(x)$ has at least two real roots. (Hint: Intermediate value theorem.)

Consider the graph of $f(x)$. Since $f(0)=a_{0}<0$, we see that the y-intercept of the graph is negative. On the other hand, since $a_{n}>0$ and n is even, the leading term $a_{n} x^{n}$ is positive for any x. For $|x|$ large, the term $a_{n} x^{n}$ will dominate, and so we have

$$
\lim _{x \rightarrow-\infty} f(x)=+\infty \quad \text { and } \quad \lim _{x \rightarrow+\infty} f(x)=+\infty
$$

If $\lim _{x \rightarrow-\infty} f(x)=+\infty$, there must exist some number $\alpha<0$ where $f(\alpha)>0$. Since $f(0)=a_{0}<0$, the Intermediate Value Theorem implies that there exists some $\alpha<\beta<0$ such that $f(\beta)=0$. Similarly, there is some value $0<a$ where $f(a)$ and so there exists $0<b<a$ with $f(b)=0$. We have found two real roots.
A.2. Leibniz (1702) claimed that $x^{4}+a^{4}$ (for $a \in \mathbb{R}$) cannot be factored over \mathbb{R}. (In modern language, he claimed that $x^{4}+a^{4} \in \mathbb{R}[x]$ is irreducible.) Prove him wrong. (Hint: What are the fourth roots of $-a^{4}$?)

First we will solve the equation $x^{4}+a^{4}$, or $x^{4}=-a^{4}$. Since $a^{4}>0$ we can write $-a^{4}=a^{4} \operatorname{cis}(\pi)$ in polar form. Thus the fourth roots of $-a^{4}$ will have length $|a|$ and angles $(\pi+2 \pi k) / 4$ for $k \in \mathbb{Z}$. In other words,

$$
\begin{aligned}
\sqrt[4]{-a^{4}} & =\{|a| \operatorname{cis}(\pi / 4),|a| \operatorname{cis}(3 \pi / 4),|a| \operatorname{cis}(5 \pi / 4),|a| \operatorname{cis}(7 \pi / 4)\} \\
& =\left\{\frac{|a|}{\sqrt{2}}(1+i), \frac{|a|}{\sqrt{2}}(-1+i), \frac{|a|}{\sqrt{2}}(-1-i), \frac{|a|}{\sqrt{2}}(1-i)\right\} .
\end{aligned}
$$

By grouping the roots into conjugate pairs, we conclude that

$$
\begin{aligned}
x^{4}+a^{4} & =\left(x-\frac{|a|}{\sqrt{2}}(1+i)\right)\left(x-\frac{|a|}{\sqrt{2}}(1-i)\right)\left(x-\frac{|a|}{\sqrt{2}}(-1+i)\right)\left(x-\frac{|a|}{\sqrt{2}}(-1-i)\right) \\
& =\left(x^{2}-2 \frac{|a|}{\sqrt{2}} x+|a|^{2}\right)\left(x^{2}+2 \frac{|a|}{\sqrt{2}} x+|a|^{2}\right) \\
& =\left(x^{2}-|a| \sqrt{2} x+a^{2}\right)\left(x^{2}+|a| \sqrt{2} x+a^{2}\right) \\
& =\left(x^{2}-a \sqrt{2} x+a^{2}\right)\left(x^{2}+a \sqrt{2} x+a^{2}\right)
\end{aligned}
$$

We have succeeded in factoring $x^{4}+a^{4}$ into two real quadratics. That is, Leibniz was wrong. Note: In the case $a=\sqrt{2}$ we recover the result from Exam 1, Problem 3:

$$
x^{4}+(\sqrt{2})^{4}=x^{4}+4=\left(x^{2}-2 x+2\right)\left(x^{2}+2 x+2\right) .
$$

A.3. Nicolaus Bernoulli (1742) claimed in a letter to Euler that

$$
f(x)=x^{4}-4 x^{3}+2 x^{2}+4 x+4
$$

does not factor over \mathbb{R}. Euler responded (1743) that $f(x)$ has roots $1 \pm \alpha / 2$ and $1 \pm \bar{\alpha} / 2$, where

$$
\alpha=\sqrt{2 \sqrt{7}+4}+i \sqrt{2 \sqrt{7}-4} .
$$

Use this information to prove Bernoulli wrong.

First note that $\overline{1+\alpha / 2}=1+\bar{\alpha} / 2$ and $\overline{1-\alpha / 2}=1-\bar{\alpha} / 2$. Then grouping the roots into conjugate pairs gives

$$
\begin{aligned}
f(x) & =(x-(1+\alpha / 2))(x-(1+\bar{\alpha} / 2))(x-(1-\alpha / 2))(x-(1-\bar{\alpha} / 2)) \\
& =\left(x-\left(2+\frac{\alpha+\bar{\alpha}}{2}\right) x+\left(1+\frac{\alpha+\bar{\alpha}}{2}+\frac{\alpha \bar{\alpha}}{4}\right)\right)\left(x-\left(2+\frac{\alpha+\bar{\alpha}}{2}\right) x+\left(1+\frac{\alpha+\bar{\alpha}}{2}+\frac{\alpha \bar{\alpha}}{4}\right)\right)
\end{aligned}
$$

Since $\alpha+\bar{\alpha}$ and $\alpha \bar{\alpha}$ are always real for any $\alpha \in \mathbb{C}$, we have factored $f(x)$ into two real quadratics. If you like, you can follow Euler to get the explicit formulas. The first of the two quadratic factors is

$$
(x-(2+\sqrt{2 \sqrt{7}+4}) x+(1+\sqrt{7}+\sqrt{2 \sqrt{7}+4}))
$$

A.4. Given a polynomial $p(x) \in \mathbb{C}[x]$ with complex coefficients, we define its conjugate polynomial $\bar{p}(x)$ by

$$
\bar{p}(z):=\overline{p(\bar{z})} \quad \text { for all } z \in \mathbb{C}
$$

This has the effect of conjugating the coefficients. Prove that the polynomial $f(x)=p(x) \bar{p}(x)$ has real coefficients.

Let $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \in \mathbb{C}[x]$, so that $\bar{p}(x)=\overline{a_{n}} x^{n}+\overline{a_{n-1}} x^{n-1}+\cdots+\overline{a_{1}} x+\overline{a_{0}}$. Note that each term of the product $f(x)=p(x) \bar{p}(x)$ is equal to the product of some term from $p(x)$ and some term from $\bar{p}(x)$. That is, the the x^{k} term of $f(x)$ looks like

$$
a_{0} x^{0} \overline{a_{k}} x^{k}+a_{1} x^{1} \overline{a_{k-1}} x^{k-1}+\cdots+a_{k-1} x^{k-1} \overline{a_{1}} x^{1}+a_{k} x^{k} \overline{a_{0}} x^{0} .
$$

In other words, the coefficient of x^{k} in $f(x)$ is

$$
a_{0} \overline{a_{k}}+a_{1} \overline{a_{k-1}}+a_{2} \overline{a_{k-2}}+\cdots+a_{k-2} \overline{a_{2}}+a_{k-1} \overline{a_{1}}+a_{k} \overline{a_{0}} .
$$

Now let us conjugate this coefficient to get

$$
\begin{aligned}
& \overline{a_{0} \overline{a_{k}}+a_{1} \overline{a_{k-1}}+a_{2} \overline{\overline{k_{k-2}}}+\cdots+a_{k-2} \overline{\overline{a_{2}}}+a_{k-1} \overline{\overline{a_{1}}}+a_{k} \overline{a_{0}}} \\
& =\overline{a_{0}} a_{k}+\overline{a_{1}} a_{k-1}+\overline{a_{2}} a_{k-2}+\cdots+\overline{a_{k-2}} a_{2}+\overline{a_{k-1}} a_{1}+\overline{a_{k}} a_{0} \\
& =a_{k} \overline{a_{0}}+a_{k-1} \overline{a_{1}}+a_{k-2} \overline{a_{2}}+\cdots+a_{2} \overline{a_{k}-2}+a_{1} \overline{a_{k-1}}+a_{0} \overline{a_{k}} \\
& =a_{0} \overline{a_{k}}+a_{1} \overline{a_{k-1}}+a_{2} \overline{a_{k-2}}+\cdots+a_{k-2} \overline{a_{2}}+a_{k-1} \overline{a_{1}}+a_{k} \overline{a_{0}} .
\end{aligned}
$$

Recall that a complex number α is real if and only if $\bar{\alpha}=\alpha$. Since the coefficient of x^{k} is equal to its own conjugate, we conclude that it is real. This is true for every coefficient of $f(x)$.

For the following problems you should use Proposition 6.10 in the text, which says: If $G(x)$ is a greatest common divisor (common divisor with largest degree) of $A(x)$ and $B(x)$ over some field \mathbb{F}, then there exist polynomials $M(x)$ and $N(x)$ over \mathbb{F} such that

$$
A(x) M(x)+B(x) N(x)=G(x) .
$$

A.5. Prove: If $H(x)$ is any other common divisor of $A(x)$ and $B(x)$ then $H(x)$ divides $G(x)$. If $H(x)$ also has largest degree, then $H(x)=c G(x)$ for some nonzero constant $c \in \mathbb{F}$. Hence we can say that "the" greatest common divisor of $A(x)$ and $B(x)$ is unique up to nonzero constant multiples.

Suppose that $G(x)$ and $H(x)$ are both gcd's for $A(x)$ and $B(x)$. That is, they are both common divisors with largest possible degree, say n. How different could they be? Using Prop 6.10 in the text, there exist polynomials $M(x)$ and $N(x)$ such that

$$
A(x) M(x)+B(x) N(x)=G(x) .
$$

But since $H(x)$ is a common divisor of $A(x)$ and $B(x)$ by definition, there exist polynomials $\alpha(x)$ and $\beta(x)$ such that $A(x)=H(x) \alpha(x)$ and $B(x)=H(x) \beta(x)$. Substituting this into the original equation gives

$$
\begin{aligned}
H(x) \alpha(x) M(x)+H(x) \beta(x) N(x) & =G(x) \\
H(x)(\alpha(x) M(x)+\beta(x) N(x)) & =G(x)
\end{aligned}
$$

We conclude that $H(x)$ divides $G(x)$. Let $Q(x)=\alpha(x) M(x)+\beta(x) N(x)$ so that $H(x) Q(x)=G(x)$. Equating degrees of these two polynomials gives $\operatorname{deg}(Q)+\operatorname{deg}(H)=\operatorname{deg}(G)$. But we have $\operatorname{deg}(H)=$ $\operatorname{deg}(G)=n$ by assumption, which implies that $\operatorname{deg}(Q)=0$. The polynomials of degree zero are precisely the nonzero constants $k \neq 0 \in \mathbb{F}$. Hence $k H(x)=G(x)$, or $H(x)=\frac{1}{k} G(x)$. We conclude that any two gcd's for $A(x)$ and $B(x)$ differ by multiplication by a nonzero constant.

Note: If we expand the definition to say that a gcd must be monic (have leading coefficient equal to $1)$, then this result implies that every two polynomials have a unique greatest common divisor.
A.6. Euclid's Lemma for Polynomials. Let $P(x)$ be an irreducible polynomial over \mathbb{F} (it cannot be factored into two polynomials of positive degree over \mathbb{F}) and suppose that $P(x)$ divides a product $F(x) G(x)$. In this case, prove that $P(x)$ must divide either $F(x)$ or $G(x)$ (or both).

Let $P(x)$ be irreducible and suppose that $P(x)$ divides $F(x) G(x)$. If $P(x)$ divides either of the factors we are done. So suppose without loss of generality that $P(x)$ does not divide $F(x)$. What could the gcd of $P(x)$ and $F(x)$ be? Since the gcd divides $P(x)$ it can be only 1 or $P(x)$. But the gcd must also divide $F(x)$ so we conclude that $\operatorname{gcd}(P(x), F(x))=1$. By Prop 6.10 there exist polynomials $M(x)$ and $N(x)$ such that

$$
P(x) M(x)+F(x) N(x)=1 .
$$

Multiply this equation by $G(x)$ and use the fact that $P(x) Q(x)=F(x) G(x)$ for some $Q(x)$ to conclude that

$$
\begin{array}{r}
P(x) M(x) G(x)+F(x) G(x) N(x)=G(x) \\
P(x) M(x) G(x)+P(x) Q(x) N(x)=G(x) \\
P(x)(M(x) G(x)+Q(x) N(x))=G(x) .
\end{array}
$$

In other words, $P(x)$ divides $G(x)$, as desired.
Note: Euclid's Lemma leads immediately to the fact that every polynomial over a field \mathbb{F} has an essentially unique decomposition into irreducible (prime) factors.

