
Math 461 F Spring 2011
Homework 5 Solutions Drew Armstrong

Problems.

A.1. Let f(x) = anx
n + · · · + a1x + a0 ∈ R[x]. If n is even, with an > 0 and a0 < 0, prove that

f(x) has at least two real roots. (Hint: Intermediate value theorem.)

Consider the graph of f(x). Since f(0) = a0 < 0, we see that the y-intercept of the graph is
negative. On the other hand, since an > 0 and n is even, the leading term anx

n is positive for any
x. For |x| large, the term anx

n will dominate, and so we have

lim
x→−∞

f(x) = +∞ and lim
x→+∞

f(x) = +∞.

If limx→−∞ f(x) = +∞, there must exist some number α < 0 where f(α) > 0. Since f(0) = a0 < 0,
the Intermediate Value Theorem implies that there exists some α < β < 0 such that f(β) = 0.
Similarly, there is some value 0 < a where f(a) and so there exists 0 < b < a with f(b) = 0. We
have found two real roots.

A.2. Leibniz (1702) claimed that x4 + a4 (for a ∈ R) cannot be factored over R. (In modern
language, he claimed that x4 + a4 ∈ R[x] is irreducible.) Prove him wrong. (Hint: What are the
fourth roots of −a4?)

First we will solve the equation x4 + a4, or x4 = −a4. Since a4 > 0 we can write −a4 = a4 cis(π)
in polar form. Thus the fourth roots of −a4 will have length |a| and angles (π + 2πk)/4 for k ∈ Z.
In other words,

4
√
−a4 = {|a| cis(π/4), |a| cis(3π/4), |a| cis(5π/4), |a| cis(7π/4)}

=
{
|a|√

2
(1 + i),

|a|√
2

(−1 + i),
|a|√

2
(−1− i), |a|√

2
(1− i)

}
.

By grouping the roots into conjugate pairs, we conclude that

x4 + a4 =
(
x− |a|√

2
(1 + i)

)(
x− |a|√

2
(1− i)

)(
x− |a|√

2
(−1 + i)

)(
x− |a|√

2
(−1− i)

)
=
(
x2 − 2

|a|√
2
x+ |a|2

)(
x2 + 2

|a|√
2
x+ |a|2

)
=
(
x2 − |a|

√
2x+ a2

)(
x2 + |a|

√
2x+ a2

)
=
(
x2 − a

√
2x+ a2

)(
x2 + a

√
2x+ a2

)
We have succeeded in factoring x4 + a4 into two real quadratics. That is, Leibniz was wrong.

Note: In the case a =
√

2 we recover the result from Exam 1, Problem 3:

x4 + (
√

2)4 = x4 + 4 = (x2 − 2x+ 2)(x2 + 2x+ 2).

A.3. Nicolaus Bernoulli (1742) claimed in a letter to Euler that

f(x) = x4 − 4x3 + 2x2 + 4x+ 4

does not factor over R. Euler responded (1743) that f(x) has roots 1± α/2 and 1± α/2, where

α =
√

2
√

7 + 4 + i

√
2
√

7− 4.



Use this information to prove Bernoulli wrong.

First note that 1 + α/2 = 1+α/2 and 1− α/2 = 1−α/2. Then grouping the roots into conjugate
pairs gives

f(x) = (x− (1 + α/2))(x− (1 + α/2))(x− (1− α/2))(x− (1− α/2))

=
(
x−

(
2 +

α+ α

2

)
x+

(
1 +

α+ α

2
+
αα

4

))(
x−

(
2 +

α+ α

2

)
x+

(
1 +
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2
+
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4

))
Since α+α and αα are always real for any α ∈ C, we have factored f(x) into two real quadratics.

If you like, you can follow Euler to get the explicit formulas. The first of the two quadratic factors
is (

x−
(

2 +
√

2
√

7 + 4
)
x+

(
1 +
√

7 +
√

2
√

7 + 4
))

A.4. Given a polynomial p(x) ∈ C[x] with complex coefficients, we define its conjugate polynomial
p(x) by

p(z) := p(z) for all z ∈ C.
This has the effect of conjugating the coefficients. Prove that the polynomial f(x) = p(x)p(x) has
real coefficients.

Let p(x) = anx
n+an−1x

n−1+· · ·+a1x+a0 ∈ C[x], so that p(x) = anx
n+an−1x

n−1+· · ·+a1x+a0.
Note that each term of the product f(x) = p(x)p(x) is equal to the product of some term from p(x)
and some term from p(x). That is, the the xk term of f(x) looks like

a0x
0akx

k + a1x
1ak−1x

k−1 + · · ·+ ak−1x
k−1a1x

1 + akx
ka0x

0.

In other words, the coefficient of xk in f(x) is

a0ak + a1ak−1 + a2ak−2 + · · ·+ ak−2a2 + ak−1a1 + aka0.

Now let us conjugate this coefficient to get

a0ak + a1ak−1 + a2ak−2 + · · ·+ ak−2a2 + ak−1a1 + aka0

= a0ak + a1ak−1 + a2ak−2 + · · ·+ ak−2a2 + ak−1a1 + aka0

= aka0 + ak−1a1 + ak−2a2 + · · ·+ a2ak − 2 + a1ak−1 + a0ak

= a0ak + a1ak−1 + a2ak−2 + · · ·+ ak−2a2 + ak−1a1 + aka0.

Recall that a complex number α is real if and only if α = α. Since the coefficient of xk is equal to
its own conjugate, we conclude that it is real. This is true for every coefficient of f(x).

For the following problems you should use Proposition 6.10 in the text, which says: If G(x) is a
greatest common divisor (common divisor with largest degree) of A(x) and B(x) over some field F,
then there exist polynomials M(x) and N(x) over F such that

A(x)M(x) +B(x)N(x) = G(x).

A.5. Prove: If H(x) is any other common divisor of A(x) and B(x) then H(x) divides G(x). If
H(x) also has largest degree, then H(x) = cG(x) for some nonzero constant c ∈ F. Hence we can say
that “the” greatest common divisor of A(x) and B(x) is unique up to nonzero constant multiples.



Suppose that G(x) and H(x) are both gcd’s for A(x) and B(x). That is, they are both common
divisors with largest possible degree, say n. How different could they be? Using Prop 6.10 in the
text, there exist polynomials M(x) and N(x) such that

A(x)M(x) +B(x)N(x) = G(x).

But since H(x) is a common divisor of A(x) and B(x) by definition, there exist polynomials α(x)
and β(x) such that A(x) = H(x)α(x) and B(x) = H(x)β(x). Substituting this into the original
equation gives

H(x)α(x)M(x) +H(x)β(x)N(x) = G(x)

H(x)(α(x)M(x) + β(x)N(x)) = G(x)

We conclude that H(x) divides G(x). Let Q(x) = α(x)M(x)+β(x)N(x) so that H(x)Q(x) = G(x).
Equating degrees of these two polynomials gives deg(Q)+deg(H) = deg(G). But we have deg(H) =
deg(G) = n by assumption, which implies that deg(Q) = 0. The polynomials of degree zero are
precisely the nonzero constants k 6= 0 ∈ F. Hence kH(x) = G(x), or H(x) = 1

kG(x). We conclude
that any two gcd’s for A(x) and B(x) differ by multiplication by a nonzero constant.

Note: If we expand the definition to say that a gcd must be monic (have leading coefficient equal to
1), then this result implies that every two polynomials have a unique greatest common divisor.

A.6. Euclid’s Lemma for Polynomials. Let P (x) be an irreducible polynomial over F (it cannot
be factored into two polynomials of positive degree over F) and suppose that P (x) divides a product
F (x)G(x). In this case, prove that P (x) must divide either F (x) or G(x) (or both).

Let P (x) be irreducible and suppose that P (x) divides F (x)G(x). If P (x) divides either of the
factors we are done. So suppose without loss of generality that P (x) does not divide F (x). What
could the gcd of P (x) and F (x) be? Since the gcd divides P (x) it can be only 1 or P (x). But
the gcd must also divide F (x) so we conclude that gcd(P (x), F (x)) = 1. By Prop 6.10 there exist
polynomials M(x) and N(x) such that

P (x)M(x) + F (x)N(x) = 1.

Multiply this equation by G(x) and use the fact that P (x)Q(x) = F (x)G(x) for some Q(x) to
conclude that

P (x)M(x)G(x) + F (x)G(x)N(x) = G(x)

P (x)M(x)G(x) + P (x)Q(x)N(x) = G(x)

P (x)(M(x)G(x) +Q(x)N(x)) = G(x).

In other words, P (x) divides G(x), as desired.

Note: Euclid’s Lemma leads immediately to the fact that every polynomial over a field F has an
essentially unique decomposition into irreducible (prime) factors.


