Reading.

Section 2.4

Problems.

A.1. Euclid's Lemma. Suppose that a divides $b c$ for $a, b, c \in \mathbb{Z}$ with a and b coprime (i.e. they have no common factor except ± 1). Prove that a must divide c. (Hint: Since a and b are coprime, you may assume - without proof - that there exist $x, y \in \mathbb{Z}$ such that $a x+b y=1$.)
A.2. Prove that $\sqrt[3]{2}$ is not rational.
A.3. Consider a quadratic field extension $F \subseteq F[\sqrt{c}]=\{a+b \sqrt{c}: a, b \in F\}$ and define the conjugation map $a+b \sqrt{c} \mapsto a-b \sqrt{c}$. Prove that for all $u, v \in F[\sqrt{c}]$ we have

- $\overline{u+v}=\bar{u}+\bar{v}$,
- $\overline{u v}=\bar{u} \bar{v}$.
A.4. Consider again the same field extension $F \subseteq F[\sqrt{c}]$ and let $p(x) \in F[x]$ be a polynomial with coefficients in F. Prove that for any $\alpha \in F[\sqrt{c}]$ we have

$$
p(\alpha)=0 \quad \Longleftrightarrow \quad p(\bar{\alpha})=0
$$

For the next two problems you may assume - without proof — that $2 \cos (2 \pi / 7)$ is a root of $x^{3}+x^{2}-2 x-1=0$.
A.5. Prove that $x^{3}+x^{2}-2 x-1=0$ has no rational root, and hence that $\cos (2 \pi / 7)$ is not rational.
A.6. Prove that $\cos (2 \pi / 7)$ is not constructible, and hence that the regular heptagon is not constructible with straightedge and compass.

Note: We have now proved that the following classical problems are impossible: "doubling the cube", "trisecting an angle", "constructing the regular heptagon". The only problem left is "squaring the circle", which is equivalent to constructing π. Lindemann (1882) proved that π is not constructible, but I'm not clever enough to present the proof to you. (Wikipedia has it.)

