Math 461 F Spring 2011
Homework 3 Solutions Drew Armstrong

Problems.

A.1. How many different (complex) numbers does the expression v/1 4 /3 represent?
Find a polynomial over Z which has these numbers as its roots.

The symbol v/3 represents two numbers and thus 1 + v/3 represents two numbers (both

nonzero). Each of these numbers in turn has two square roots, so the symbol v/1 + /3
represents four distinct numbers. Let’s look for an equation that these numbers must

satisfy. Let = represent any value of the expression /1 + v/3. Then
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Note that this last equation has at most four solutions. Hence it has exactly four solutions:

the numbers /1 + /3.

A.2. Use the trigonometric identity cos(36) = 4 cos® @ — 3 cos§ together with Cardano’s
formula to find an expression for cos(m/9). (Note: This expression must involve complex
numbers because cos(7/9) is not constructible.)

Put § = 7/9 into the equation cos(30) = 4cos®f — 3cosf to get the equation 1/2 =
cos(m/3) = 4cos3(m/9) — 3cos(r/9). Letting x = cos(m/9) we get
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Now we apply Cardano’s formula (page 5 in the text) to get
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Actually, this formula represents three different numbers, one of which is cos(7/9).

A.3. Suppose that p = 2% 4+ 1 is a prime number. Show that a must be a power of 2.
(Hint: If @ has an odd factor b, show that the polynomial 2 + 1 factors nicely.)

Let 2% + 1 be a prime number. In this case we wish to show that a must be a power
of 2. To prove this, let us assume the opposite. That is, assume that a is not a power



of 2. This means that ¢ must be divisible by an odd number, say a = nb with b odd and
b # 1 (why?). Hence we have 2¢ + 1 = 2" +1 = (27)® 4+ 1. But now recall the formula for
a difference of b-th powers:

1—2’=1—-2) Q422 +2°+- 2.
Since b is odd, we may replace x by —x to get
1+2b =0 +2)Q—z+a2>—2>+-- +2°70).
Finally, we conclude that
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That is, we have expressed 2* + 1 as a product of two integers, neither of them equal to
+1 (why?). This contradicts the fact that 2% + 1 is prime, and hence our assumption that
a is not a power of 2 must be false. ///

A.4. Prove that
V2=1+

1
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(You can assume that the expression on the right converges.) We can describe this process
recursively by setting so = 1 and s, = 14+ 1/(1 + s,-1) for n > 1. What is s4,7 How
close is this to /27

Since the expression on the right converges, it equals some number x, which must satisfy
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Hence z = 1+ 1/(1 + ), or 22 = 2. Thus x is either the positive or negative square root
of 2. We'll assume — without proof — that’s it’s the positive square root. (How could it
be otherwise?)

Let’s compute some partial... (what are they?) continued fractions, to see how fast they
converge to v/2. We have so = 1, sy = 1+ 1/(14+1) =3/2, s =1+ 1/(1+3/2) = 7/5,
s3=1+1/(147/5) =17/12, and finally

84:1—1—%:1—1—%:&%1.4138,
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which agrees with v/2 &~ 1.4142 to three places.
Let D be the set of numbers that can be formed from 1, +, —, x, +, v in a finite number
of steps. Now suppose that (z,y) is an intersection point for two circles
(1) (z—a)* +(y - b)* = R,
(2) (x =)+ (y—d)* =12,
where a,b,c,d,r, R € D. We want to show that z,y € D.

A.5. What change of variables (z/,y’) — (z,y) translates the plane by (—a, —b) and then
rotates the plane by —tan~!((d—b)/(c—a))? Notice that we have 2’,y € D < x,y € D.
(Il solve this one; you don’t need to hand it in.)



We want a transformation that will send the circle centers (a,b) and (¢, d) to (0,0) and
(c, 0), respectively, for some o > 0. First let T" be the translation T'(z,y) = (v — a,y — b),
so that T'(a,b) = (0,0) and T(c,d) = (¢ — a,d — b). Now we want to rotate the point
(c—a,d—b) onto the z-axis. This is accomplished by letting § = —tan='((d —b)/(c—a)).
To save space, let A := \/(c — a)? + (d — b)2. Then the required rotation matrix is

R cosf sinf\ 1 /( c—a d-b
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Applying R to (0,0) just gives (0,0) back, as desired. If we apply R to (¢ —a,d — b) we

get
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Thus we have R(T(a,b)) = (0,0) and R(T(c,d)) = («,0), where a = A (which equals the
distance between the two circle centers), and RT is the desired transformation.

Now, if (z,y) is a point on the original two circles, then R(T'(x,y)) will be a point on
the transformed circles. We will call this new point (2/,y'):
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Note that we can also express (z,y) in terms of (2/,4") by applying the inverse transforma-

tion: (z,y) = TY(R™Y(2',1)), where T~! is translation by (+a,+b) and R~ is rotation

by +6. For fun, I’ll write this out:
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The actual formula here is not so important. The point I want to emphasize is that the
transformation (z,y) — (2/,y') and its inverse (2/,y') — (z,y) both preserve the

property of being in the set D because they can be computed from the given
quantities using +, —, x, +, V-

A.6. Applying this transformation sends the center of circle (1) to the origin and then
rotates the center of circle (2) to the z-axis, yielding a new system

(3) ZE’Q + y/2 _ RQ,
(4) (' — ) +y?% =17,

where ae € D. Show that 2/,y’ € D, and hence z,y € D.



For extra fun (not really — it’s hell), you can plug the formula (z,y) = T-Y(R™!(2’,y"))
into equations (1) and (2) to observe that you get (3) and (4). (I did this on a computer,
just to check. Yes, it works.) However, this is not necessary because we know for geometric
reasons that if (x,y) is on the circles (1) and (2) then (2/,v’) is on the circles (3) and (4).
So we just need to solve the new system.

First write y2 = R? — 2/? and plug this into (4) to get

(' — )+ R? — 2 = 12

2? —2ax’ +a* + R? — 2% =12
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Then plug back into (3) to get

24 R2 —42\?
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This gives us two points of intersection. Note that z’,3’ € D, and hence z,y € D,
which is what we wanted to show. Done.

Wait, do you want to see what the intersection points look like in (x,y) coordinates?
Okay, here they are. (Recall a = A.) The first point of intersection is

(c—a) (A2=2) + (a - b)\/R2 - <%>2

Tr = A + a,
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and the second is
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