Reading.

Section 2.4

Problems.

A.1. How many different (complex) numbers does the expression $\sqrt{1+\sqrt{3}}$ represent? Find a polynomial over \mathbb{Z} which has these numbers as its roots.
A.2. Use the trigonometric identity $\cos (3 \theta)=4 \cos ^{3} \theta-3 \cos \theta$ together with Cardano's formula to find an expression for $\cos (\pi / 9)$. (Note: This expression must involve complex numbers because $\cos (\pi / 9)$ is not constructible.)
A.3. Suppose that $p=2^{a}+1$ is a prime number. Show that a must be a power of 2. (Hint: If a has an odd factor b, show that the polynomial $x^{b}+1$ factors nicely.)
A.4. Prove that

$$
\sqrt{2}=1+\frac{1}{2+\frac{1}{2+\frac{1}{2+\ddots}}}
$$

(You can assume that the expression on the right converges.) We can describe this process recursively by setting $s_{0}=1$ and $s_{n}=1+1 /\left(1+s_{n-1}\right)$ for $n \geq 1$. What is s_{4} ? How close is this to $\sqrt{2}$?

Let D be the set of numbers that can be formed from $1,+,-, \times, \div, \sqrt{ }$ in a finite number of steps. Now suppose that (x, y) is an intersection point for two circles

$$
\begin{align*}
& (x-a)^{2}+(y-b)^{2}=R^{2} \tag{1}\\
& (x-c)^{2}+(y-d)^{2}=r^{2} \tag{2}
\end{align*}
$$

where $a, b, c, d, r, R \in D$. We want to show that $x, y \in D$.
A.5. What change of variables $(x, y) \rightarrow\left(x^{\prime}, y^{\prime}\right)$ translates the plane by (a, b) and then rotates the plane by angle $\tan ^{-1}((b+d) /(a+c))$? Observe that $x^{\prime}, y^{\prime} \in D \Leftrightarrow x, y \in D$.
A.6. Applying this transformation sends the center of circle (1) to the origin and then rotates the center of circle (2) to the x-axis, yielding a new system

$$
\begin{align*}
x^{\prime 2}+y^{\prime 2} & =R^{2} \tag{3}\\
\left(x^{\prime}-\alpha\right)^{2}+y^{\prime 2} & =r^{2} \tag{4}
\end{align*}
$$

where $\alpha \in D$. Show that $x^{\prime}, y^{\prime} \in D$, and hence $x, y \in D$.

