A.1. Suppose that the cubic equation $a x^{3}+b x^{2}+c x+d=0$ has three roots, called r, s, t. Give a formula for $r s+r t+s t$ in terms of a, b, c, d.

By the Factor Theorem we can write

$$
\begin{aligned}
a x^{3}+b x^{2}+c x+d & =a(x-r)(x-s)(x-t) \\
& =a x^{3}-a(r+s+t) x^{2}+a(r s+r t+s t) x-a(r s t)
\end{aligned}
$$

Now recall that two polynomials are equal if and only if their coefficients are equal. Hence we have

$$
r s+r t+s t=\frac{c}{a}
$$

Note that $a \neq 0$ because it is the leading coefficient.

A.2. Find all complex solutions $z \in \mathbb{C}$ to the quadratic equation

$$
z^{2}-z+\left(\frac{1}{4}-\frac{i}{2}\right)=0
$$

Note that

$$
\begin{aligned}
z^{2}-z+\frac{1}{4}-\frac{1}{4}+\left(\frac{1}{4}-\frac{i}{2}\right) & =0 \\
\left(z^{2}-z+\frac{1}{4}\right) & =\frac{i}{2} \\
\left(z-\frac{1}{2}\right)^{2} & =\frac{i}{2}
\end{aligned}
$$

Hence $z^{2}-1 / 2$ must be a square root of $i / 2$. There are two of these, and we can find them! Suppose that $x^{2}=i / 2$ with $x=r \operatorname{cis} \theta$ in polar form. Thus we have

$$
x^{2}=r^{2} \operatorname{cis}(2 \theta)=\frac{i}{2}=\frac{1}{2} \operatorname{cis}\left(\frac{\pi}{2}\right)
$$

Since the lengths are equal we get $r^{2}=1 / 2$, or $r=1 / \sqrt{2}$. Since the angles are equal we get $2 \theta=\pi / 2+2 \pi k$ for any integer k. In other words, $\theta=\pi / 4$ or $\theta=5 \pi / 4$. We conclude that the square roots of $i / 2$ are

$$
x=\frac{1}{\sqrt{2}} \operatorname{cis}\left(\frac{\pi}{4}\right)=\frac{1}{2}+\frac{i}{2} \quad \text { and } \quad x=\frac{1}{2} \operatorname{cis}\left(\frac{4 \pi}{5}\right)=-\frac{1}{2}-\frac{i}{2}
$$

Finally, the solutions to the original equation are

$$
z-\frac{1}{2}=\frac{1}{2}+\frac{i}{2} \quad \Rightarrow \quad z=1+\frac{i}{2}
$$

and

$$
z-\frac{1}{2}=-\frac{1}{2}-\frac{i}{2} \quad \Rightarrow \quad z=-\frac{i}{2}
$$

A.3. Use de Moivre's formula and the fact that $\cos ^{2} \alpha+\sin ^{2} \alpha=1$ for all $\alpha \in \mathbb{R}$ to come up with a formula for $\cos (\theta / 2)$ in terms of $\cos \theta$ alone. (You can assume $\cos (\theta / 2) \geq 0$.) Use your formula to find the exact value of $\cos (\pi / 8)$.

De Moivre's formula tells us that

$$
\begin{aligned}
\cos (2 \alpha)+i \sin (2 \alpha) & =(\cos \alpha+i \sin \alpha)^{2} \\
& =\left(\cos ^{2} \alpha-\sin ^{2} \alpha\right)+i(2 \sin \alpha \cos \alpha)
\end{aligned}
$$

and hence we get $\cos (2 \alpha)=\cos ^{2} \alpha-\sin ^{2} \alpha$ for all $\alpha \in \mathbb{R}$. Then substituting $\alpha=\theta / 2$ and using the Pythagorean Theorem yields

$$
\begin{aligned}
\cos \theta & =\cos ^{2}(\theta / 2)-\sin ^{2}(\theta / 2) \\
& =\cos ^{2}(\theta / 2)-\left(1-\cos ^{2}(\theta / 2)\right) \\
& =2 \cos ^{2}(\theta / 2)-1,
\end{aligned}
$$

and we may solve for $\cos (\theta / 2)$ to get.

$$
\cos \left(\frac{\theta}{2}\right)=\sqrt{\frac{1+\cos \theta}{2}}=\sqrt{\frac{1}{2}+\frac{1}{2} \cos \theta} .
$$

(Here we assume that $\theta / 2$ is small - less than $\pi / 2-$ so that $\cos (\theta / 2)$ is a positive number.) To get a formula for $\cos (\pi / 8)$, let's start with something that we know, like $\cos (\pi / 2)=0$. Then we use the formula repeatedly to get

$$
\cos \left(\frac{\pi}{4}\right)=\sqrt{\frac{1}{2}+\frac{1}{2} \cos \left(\frac{\pi}{2}\right)}=\sqrt{\frac{1}{2}+\frac{1}{2} 0}=\sqrt{\frac{1}{2}}
$$

and

$$
\cos \left(\frac{\pi}{8}\right)=\sqrt{\frac{1}{2}+\frac{1}{2} \cos \left(\frac{\pi}{4}\right)}=\sqrt{\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}}}
$$

and

$$
\cos \left(\frac{\pi}{16}\right)=\sqrt{\frac{1}{2}+\frac{1}{2} \cos \left(\frac{\pi}{8}\right)}=\sqrt{\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}}}} .
$$

Wait, I went too far.
A.4. Let $\omega=\cos (2 \pi / 3)+i \sin (2 \pi / 3)$. Prove that for any a, b we have

$$
a^{3}-b^{3}=(a-b)(a-\omega b)\left(a-\omega^{2} b\right) .
$$

Can you find a similar formula for the difference $a^{n}-b^{n}$ of nth powers? Hint: Factor $x^{n}-1$ and then put $x=a / b$.

If $\omega=\operatorname{cis}(2 \pi / 3)$, recall that $\omega^{3}=1$ and $1+\omega+\omega^{2}=0$. Thus we have

$$
\begin{aligned}
& (a-b)(a-\omega b)\left(a-\omega^{2} b\right) \\
& =a^{3}-a^{2} b\left(1+\omega+\omega^{2}\right)+a b^{2} \omega\left(1+\omega+\omega^{2}\right)-b^{3} \omega^{3} \\
& =a^{3}-b^{3} .
\end{aligned}
$$

In general, I guess that

$$
a^{n}-b^{n}=(a-b)(a-\omega b)\left(a-\omega^{2} b\right) \cdots\left(a-\omega^{n-1} b\right)
$$

where $\omega=\operatorname{cis}(2 \pi / n)$. Note that the above method of proof would be messy, so let's use a slicker way. First we use the Factor Theorem to write

$$
x^{n}-1=(x-1)(x-\omega)\left(x-\omega^{2}\right) \cdots\left(x-\omega^{n-1}\right) .
$$

Since this formula holds for any x we can set $x=a / b$ to get

$$
\begin{aligned}
\left(\frac{a}{b}\right)^{n}-1 & =\left(\frac{a}{b}-1\right)\left(\frac{a}{b}-\omega\right)\left(\frac{a}{b}-\omega^{2}\right) \cdots\left(\frac{a}{b}-\omega^{n-1}\right), \quad \text { or } \\
\frac{a^{n}-b^{n}}{b^{n}} & =\frac{(a-b)}{b} \frac{(a-\omega b)}{b} \frac{\left(a-\omega^{2} b\right)}{b} \cdots \frac{\left(a-\omega^{n-1} b\right)}{b} .
\end{aligned}
$$

Now multiply both sides by b^{n} to get the result. (Note that this argument only works for $b \neq 0$. But if $b=0$ then the formula still holds, so there's no problem.)
A.5. Prove that for every positive integer $n>1$ we have

$$
\sum_{k=1}^{n} \cos \frac{2 \pi k}{n}=0
$$

Hint: Consider the number $\omega=\cos (2 \pi / n)+i \sin (2 \pi / n)$.
First note that $\omega^{k}=\cos (2 \pi k / n)+i \sin (2 \pi k / n)$ by de Moivre's formula. We know that $\sum_{k=1}^{n} \omega^{k}=\omega \sum_{k=0}^{n-1} \omega^{k}=\omega \cdot 0=0$. Hence we can write

$$
\begin{aligned}
0+0 i & =\sum_{k=1}^{n} \omega^{k} \\
& =\sum_{k=1}^{n}\left[\cos \left(\frac{2 \pi k}{n}\right)+i \sin \left(\frac{2 \pi k}{n}\right)\right] \\
& =\left[\sum_{k=1}^{n} \cos \left(\frac{2 \pi k}{n}\right)\right]+i\left[\sum_{k=1}^{n} \sin \left(\frac{2 \pi k}{n}\right)\right] .
\end{aligned}
$$

Equating the real parts of these two complex numbers gives the result.
A.6. Define a function $f: \mathbb{C} \rightarrow \mathrm{M}_{2 \times 2}(\mathbb{R})$ from the complex numbers to the 2×2 real matrices by setting

$$
f(a+i b)=\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)
$$

For any complex numbers $z, w \in \mathbb{C}$ verify the following:
(a) $f(z+w)=f(z)+f(w)$,
(b) $f(z w)=f(z) f(w)$,
(c) $|z|^{2}=\operatorname{det} f(z)$.
(The operations on the right hand sides of the equations are matrix addition, matrix multiplication, and matrix determinant.)

Let $z=a+i b$ and $w=c+i d$, where $a, b, c, d \in \mathbb{R}$. To see part (a) note that

$$
\begin{aligned}
f(z+w) & =f((a+c)+i(b+d)) \\
& =\left(\begin{array}{cc}
(a+c) & -(b+d) \\
(b+d) & (a+c)
\end{array}\right) \\
& =\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)+\left(\begin{array}{cc}
c & -d \\
d & c
\end{array}\right) \\
& =f(z)+f(w) .
\end{aligned}
$$

For part (b), we have

$$
\begin{aligned}
f(z) f(w) & =\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)\left(\begin{array}{cc}
c & -d \\
d & c
\end{array}\right) \\
& =\left(\begin{array}{ll}
(a d-b c) & -(a c+b d) \\
(a c+b d) & (a d-b c)
\end{array}\right) \\
& =f((a d-b c)+i(a c+b d)) \\
& =f((a+i b)(c+i d)) \\
& =f(z w) .
\end{aligned}
$$

Here comes part (c):

$$
\begin{aligned}
\operatorname{det} f(z) & =\operatorname{det}\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right) \\
& =a a-b(-b) \\
& =a^{2}+b^{2} \\
& =|z|^{2} .
\end{aligned}
$$

What was the point of this exercise? I have stressed in class that the matrix form is the most natural way to think about complex numbers. This is because there is no funny " i " symbol hanging around (what is that thing anyway?) and because the addition and multiplication in this setting are just addition and multiplication of matrices (which are natural operations - trust me). However, I never proved in class that addition and multiplication are preserved. You just did so. In fancy language, you proved that the map f is a homomorphism from the ring of complex numbers to the ring of real 2×2 matrices. Homo="same". Morphism="structure". There is still some white space left. Should I say more? No.

