
Math 461 F Spring 2011
Homework 2 Solutions Drew Armstrong

A.1. Suppose that the cubic equation ax3 + bx2 + cx + d = 0 has three
roots, called r, s, t. Give a formula for rs+ rt+ st in terms of a, b, c, d.

By the Factor Theorem we can write

ax3 + bx2 + cx+ d = a(x− r)(x− s)(x− t)
= ax3 − a(r + s+ t)x2 + a(rs+ rt+ st)x− a(rst).

Now recall that two polynomials are equal if and only if their coefficients
are equal. Hence we have

rs+ rt+ st =
c

a
.

Note that a 6= 0 because it is the leading coefficient.

A.2. Find all complex solutions z ∈ C to the quadratic equation
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Hence z2−1/2 must be a square root of i/2. There are two of these, and we
can find them! Suppose that x2 = i/2 with x = r cis θ in polar form. Thus
we have
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Since the lengths are equal we get r2 = 1/2, or r = 1/
√

2. Since the angles
are equal we get 2θ = π/2 + 2πk for any integer k. In other words, θ = π/4
or θ = 5π/4. We conclude that the square roots of i/2 are
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Finally, the solutions to the original equation are
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A.3. Use de Moivre’s formula and the fact that cos2 α + sin2 α = 1 for all
α ∈ R to come up with a formula for cos(θ/2) in terms of cos θ alone. (You
can assume cos(θ/2) ≥ 0.) Use your formula to find the exact value of
cos(π/8).

De Moivre’s formula tells us that

cos(2α) + i sin(2α) = (cosα+ i sinα)2

= (cos2 α− sin2 α) + i(2 sinα cosα),

and hence we get cos(2α) = cos2 α− sin2 α for all α ∈ R. Then substituting
α = θ/2 and using the Pythagorean Theorem yields

cos θ = cos2(θ/2)− sin2(θ/2)

= cos2(θ/2)− (1− cos2(θ/2))

= 2 cos2(θ/2)− 1,

and we may solve for cos(θ/2) to get.
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(Here we assume that θ/2 is small — less than π/2 — so that cos(θ/2) is a
positive number.) To get a formula for cos(π/8), let’s start with something
that we know, like cos(π/2) = 0. Then we use the formula repeatedly to get
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Wait, I went too far.

A.4. Let ω = cos(2π/3) + i sin(2π/3). Prove that for any a, b we have

a3 − b3 = (a− b)(a− ωb)(a− ω2b).

Can you find a similar formula for the difference an − bn of nth powers?
Hint: Factor xn − 1 and then put x = a/b.



If ω = cis (2π/3), recall that ω3 = 1 and 1 + ω + ω2 = 0. Thus we have

(a− b)(a− ωb)(a− ω2b)

= a3 − a2b(1 + ω + ω2) + ab2ω(1 + ω + ω2)− b3ω3

= a3 − b3.
In general, I guess that

an − bn = (a− b)(a− ωb)(a− ω2b) · · · (a− ωn−1b),

where ω = cis(2π/n). Note that the above method of proof would be messy,
so let’s use a slicker way. First we use the Factor Theorem to write

xn − 1 = (x− 1)(x− ω)(x− ω2) · · · (x− ωn−1).

Since this formula holds for any x we can set x = a/b to get(a
b
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Now multiply both sides by bn to get the result. (Note that this argument
only works for b 6= 0. But if b = 0 then the formula still holds, so there’s no
problem.)

A.5. Prove that for every positive integer n > 1 we have
n∑

k=1

cos
2πk
n

= 0.

Hint: Consider the number ω = cos(2π/n) + i sin(2π/n).

First note that ωk = cos(2πk/n) + i sin(2πk/n) by de Moivre’s formula. We
know that
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Equating the real parts of these two complex numbers gives the result.

A.6. Define a function f : C→ M2×2(R) from the complex numbers to the
2× 2 real matrices by setting

f(a+ ib) =
(
a −b
b a

)
.



For any complex numbers z, w ∈ C verify the following:
(a) f(z + w) = f(z) + f(w),
(b) f(zw) = f(z)f(w),
(c) |z|2 = detf(z).

(The operations on the right hand sides of the equations are matrix addition,
matrix multiplication, and matrix determinant.)

Let z = a+ ib and w = c+ id, where a, b, c, d ∈ R. To see part (a) note that

f(z + w) = f((a+ c) + i(b+ d))

=
(

(a+ c) −(b+ d)
(b+ d) (a+ c)

)
=
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For part (b), we have

f(z)f(w) =
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)
=
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(ad− bc) −(ac+ bd)
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= f((a+ ib)(c+ id))

= f(zw).

Here comes part (c):

det f(z) = det
(
a −b
b a

)
= aa− b(−b)
= a2 + b2

= |z|2.

What was the point of this exercise? I have stressed in class that the matrix form
is the most natural way to think about complex numbers. This is because
there is no funny “i” symbol hanging around (what is that thing anyway?) and
because the addition and multiplication in this setting are just addition and
multiplication of matrices (which are natural operations — trust me). However,
I never proved in class that addition and multiplication are preserved. You just
did so. In fancy language, you proved that the map f is a homomorphism from
the ring of complex numbers to the ring of real 2×2 matrices. Homo=“same”.
Morphism=“structure”. There is still some white space left. Should I say more?
No.


