Reading.

Sections 2.1 and 2.2

Problems.

A.1. Suppose that the cubic equation $a x^{3}+b x^{2}+c x+d=0$ has three roots, called r, s, t. Give a formula for $r s+r t+s t$ in terms of a, b, c, d.
A.2. Find all complex solutions $z \in \mathbb{C}$ to the quadratic equation

$$
z^{2}-z+\left(\frac{1}{4}-\frac{i}{2}\right)=0
$$

A.3. Use de Moivre's formula and the fact that $\cos ^{2} \alpha+\sin ^{2} \alpha=1$ for all $\alpha \in \mathbb{R}$ to come up with a formula for $\cos (\theta / 2)$ in terms of $\cos \theta$ alone. (You can assume $\cos (\theta / 2) \geq 0$.) Use your formula to find the exact value of $\cos (\pi / 8)$.
A.4. Let $\omega=\cos (2 \pi / 3)+i \sin (2 \pi / 3)$. Prove that for any a, b we have

$$
a^{3}-b^{3}=(a-b)(a-\omega b)\left(a-\omega^{2} b\right)
$$

Can you find a similar formula for the difference $a^{n}-b^{n}$ of nth powers? Hint: Factor $x^{n}-1$ and then put $x=a / b$.
A.5. Prove that for every positive integer $n>1$ we have

$$
\sum_{k=1}^{n} \cos \frac{2 \pi k}{n}=0
$$

Hint: Consider the number $\omega=\cos (2 \pi / n)+i \sin (2 \pi / n)$.
A.6. Define a function $f: \mathbb{C} \rightarrow \mathrm{M}_{2 \times 2}(\mathbb{R})$ from the complex numbers to the 2×2 real matrices by setting

$$
f(a+i b)=\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)
$$

For any complex numbers $z, w \in \mathbb{C}$ verify the following:
(a) $f(z+w)=f(z)+f(w)$,
(b) $f(z w)=f(z) f(w)$,
(c) $|z|^{2}=\operatorname{det} f(z)$.
(The operations on the right hand sides of the equations are matrix addition, matrix multiplication, and matrix determinant.)

