Reading.

Sections 2.1 and 2.2

Problems.

A.1. Suppose that the cubic equation $ax^3 + bx^2 + cx + d = 0$ has three roots, called r, s, t. Give a formula for rs + rt + st in terms of a, b, c, d.

A.2. Find all complex solutions $z \in \mathbb{C}$ to the quadratic equation

$$z^2 - z + \left(\frac{1}{4} - \frac{i}{2}\right) = 0.$$

A.3. Use de Moivre's formula and the fact that $\cos^2 \alpha + \sin^2 \alpha = 1$ for all $\alpha \in \mathbb{R}$ to come up with a formula for $\cos(\theta/2)$ in terms of $\cos \theta$ alone. (You can assume $\cos(\theta/2) \ge 0$.) Use your formula to find the **exact** value of $\cos(\pi/8)$.

A.4. Let $\omega = \cos(2\pi/3) + i\sin(2\pi/3)$. Prove that for any a, b we have

$$a^{3} - b^{3} = (a - b)(a - \omega b)(a - \omega^{2}b).$$

Can you find a similar formula for the difference $a^n - b^n$ of *n*th powers? Hint: Factor $x^n - 1$ and then put x = a/b.

A.5. Prove that for every positive integer n > 1 we have

$$\sum_{k=1}^{n} \cos \frac{2\pi k}{n} = 0$$

Hint: Consider the number $\omega = \cos(2\pi/n) + i\sin(2\pi/n)$.

A.6. Define a function $f : \mathbb{C} \to M_{2 \times 2}(\mathbb{R})$ from the complex numbers to the 2×2 real matrices by setting

$$f(a+ib) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}.$$

For any complex numbers $z, w \in \mathbb{C}$ verify the following:

(a) f(z+w) = f(z) + f(w), (b) f(zw) = f(z)f(w), (c) $|z|^2 = \det f(z)$.

(The operations on the right hand sides of the equations are matrix addition, matrix multiplication, and matrix determinant.)