Reading.

Chapter 1

Book Problems.

Exercise Set 1.1: 5, 6, 8, 16, 17

Additional Problems.

A.1. Show that $(\sqrt{3} \pm 1)^{3}=6 \sqrt{3} \pm 10$. Use this to solve Exercise 1.1.1.
A.2. Let r and s be the two roots (solutions) of the quadratic equation

$$
x^{2}+p x+q=0 .
$$

Find a formula for $(r-s)^{2}$ in terms of the coefficients p, q. This quantity is called the discriminant of the equation. When are the two roots equal?
A.3. Consider the following diagram from Descartes' La Géométrie (1637). Prove that the distances $M Q$ and $M R$ are solutions to the quadratic equation $y^{2}=a y-b^{2}$. Hint: Put M at the origin of a Cartesian (x, y)-plane. In this case what is the equation of the circle?

