
Math 461 F Spring 2011
Exam 2 — Fri Mar 25 Drew Armstrong

Problem 1. [6 points]

(a) Accurately state Gauss and Wantzel’s theorem on the constructibility of regular poly-
gons with straightedge-and-compass.

A regular n-gon is constructible if and only if n is equal to a power of 2 multiplied by
distinct Fermat primes.

(b) Yes or no. For the following values of n, state whether the regular n-gon is constructible.

n regular n-gon constructible?
5 Yes
7 No
15 Yes
17 Yes

Problem 2. [6 points] In this problem we want to compute cos
(

4π
5

)
.

(a) Let ω = cos
(

4π
5

)
+ i sin

(
4π
5

)
. Label the vertices of the given regular pentagon (in the

complex plane) by powers of ω.

(b) Find a formula for u = ω + ω−1 and solve it to find cos
(

4π
5

)
. (Hint: The sum of the

five vertices is zero.)

Since u = ω + ω−1 = ω + ω = 2 cos
(

4π
5

)
, we wish to solve for u. We know that the sum of

all of the fifth roots of unity is zero. That is,

ω2 + ω + 1 + ω−1 + ω−2 = 0.

So we wish to express the sum of these roots in terms of u. First note that u2 = (ω+ω−1)2 =
ω2 + 2ωω−1 + ω−2 = ω2 + 2 + ω−2. Hence

u2 + u− 1 = ω2 + ω + 1 + ω−1 + ω−2 = 0.

By the quadratic formula we have u = −1±
√

5
2

. Since 2 cos(4π
5

) is negative, we choose the

negative root to get 2 cos(4π/5) = (−1−
√

5)/2, or

cos(4π/5) =
−1−

√
5

4
.



Problem 3. [6 points]

(a) Let a, b be positive integers. Factor 2ab − 1 as a product of two integers.

First recall the general formula for a difference of like powers:

xb − 1 = (x− 1)(1 + x+ x2 + · · ·+ xb−1).

Now substitute 2a into this expression to observe that the integer 2ab − 1 = (2a)b − 1 factors
as the product of two integers

(2a − 1)(1 + 2a + 22a + · · ·+ 2(b−1)a).

(b) Let n > 1 be a positive integer and prove the following:

If 2n − 1 is prime then n is prime.

Proof. Let 2n − 1 be a prime integer and suppose (for contradiction) that n is not prime.
Thus we can write n = ab where a, b are integers both greater than 1. But then part (a)
implies that

2n − 1 = (2a − 1)(1 + 2a + 22a + · · ·+ 2(b−1)a).

Since a, b are both greater than 1 we see that the two factors of 2n− 1 are both greater than
1. This contradicts the fact that 2n − 1 is prime. Hence n must be prime. �

Problem 4. [6 points] Let f(x) ∈ Q[x] be a cubic (i.e. degree 3) polynomial with
rational coefficients, such that f(1 +

√
2) = 0.

(a) Explain why f(x) = (x2− 2x− 1)g(x) for some g(x) ∈ Q[x] of degree 1. (You may use any
result from class without proof.)

Since 1 +
√

2 is a root, we know that its conjugate (in Q[
√

2]) is also a root. Hence by the
Factor Theorem we can write

f(x) =
(
x−

(
1 +
√

2
)) (

x−
(

1−
√

2
))

g(x),

= (x2 − 2x− 1)g(x),

where g(x) has degree 1. The coefficients of g(x) are rational since otherwise expanding the
right hand side would show that f(x) has non-rational coefficients, a contradiction.

(b) Prove that f(x) has a rational root. (Hint: Prove that g(x) has a rational root.)

Since g(x) has rational coefficients and degree 1, we can write g(x) = ax+ b with a, b ∈ Q
and a 6= 0. This implies that g(−b/a) = 0, and hence

f(−b/a) = ((−b/a)2 − 2(−b/a)− 1)g(−b/a) = 0.

We conclude that f(x) has a rational root; namely, −b/a.

Statistics: 41 exams were submitted. The Average/Median/Standard Deviation were 17.49, 18,
and 4.57, respectively. Three students received 24/25 and one student received 25/25.


