Spring 2011 Drew Armstrong

Problem 1. [6 points]
(a) Accurately state Gauss and Wantzel's theorem on the constructibility of regular polygons with straightedge-and-compass.

A regular n-gon is constructible if and only if n is equal to a power of 2 multiplied by distinct Fermat primes.
(b) Yes or no. For the following values of n, state whether the regular n-gon is constructible.

n	regular n-gon constructible?
5	Yes
7	No
15	Yes
17	Yes

Problem 2. [6 points] In this problem we want to compute $\cos \left(\frac{4 \pi}{5}\right)$.
(a) Let $\omega=\cos \left(\frac{4 \pi}{5}\right)+i \sin \left(\frac{4 \pi}{5}\right)$. Label the vertices of the given regular pentagon (in the complex plane) by powers of ω.

(b) Find a formula for $u=\omega+\omega^{-1}$ and solve it to find $\cos \left(\frac{4 \pi}{5}\right)$. (Hint: The sum of the five vertices is zero.)

Since $u=\omega+\omega^{-1}=\omega+\bar{\omega}=2 \cos \left(\frac{4 \pi}{5}\right)$, we wish to solve for u. We know that the sum of all of the fifth roots of unity is zero. That is,

$$
\omega^{2}+\omega+1+\omega^{-1}+\omega^{-2}=0 .
$$

So we wish to express the sum of these roots in terms of u. First note that $u^{2}=\left(\omega+\omega^{-1}\right)^{2}=$ $\omega^{2}+2 \omega \omega^{-1}+\omega^{-2}=\omega^{2}+2+\omega^{-2}$. Hence

$$
u^{2}+u-1=\omega^{2}+\omega+1+\omega^{-1}+\omega^{-2}=0 .
$$

By the quadratic formula we have $u=\frac{-1 \pm \sqrt{5}}{2}$. Since $2 \cos \left(\frac{4 \pi}{5}\right)$ is negative, we choose the negative root to get $2 \cos (4 \pi / 5)=(-1-\sqrt{5}) / 2$, or

$$
\cos (4 \pi / 5)=\frac{-1-\sqrt{5}}{4}
$$

Problem 3. [6 points]
(a) Let a, b be positive integers. Factor $2^{a b}-1$ as a product of two integers.

First recall the general formula for a difference of like powers:

$$
x^{b}-1=(x-1)\left(1+x+x^{2}+\cdots+x^{b-1}\right) .
$$

Now substitute 2^{a} into this expression to observe that the integer $2^{a b}-1=\left(2^{a}\right)^{b}-1$ factors as the product of two integers

$$
\left(2^{a}-1\right)\left(1+2^{a}+2^{2 a}+\cdots+2^{(b-1) a}\right)
$$

(b) Let $n>1$ be a positive integer and prove the following:

$$
\text { If } 2^{n}-1 \text { is prime then } n \text { is prime. }
$$

Proof. Let $2^{n}-1$ be a prime integer and suppose (for contradiction) that n is not prime. Thus we can write $n=a b$ where a, b are integers both greater than 1 . But then part (a) implies that

$$
2^{n}-1=\left(2^{a}-1\right)\left(1+2^{a}+2^{2 a}+\cdots+2^{(b-1) a}\right)
$$

Since a, b are both greater than 1 we see that the two factors of $2^{n}-1$ are both greater than 1. This contradicts the fact that $2^{n}-1$ is prime. Hence n must be prime.

Problem 4. [6 points] Let $f(x) \in \mathbb{Q}[x]$ be a cubic (i.e. degree 3) polynomial with rational coefficients, such that $f(1+\sqrt{2})=0$.
(a) Explain why $f(x)=\left(x^{2}-2 x-1\right) g(x)$ for some $g(x) \in \mathbb{Q}[x]$ of degree 1. (You may use any result from class without proof.)

Since $1+\sqrt{2}$ is a root, we know that its conjugate (in $\mathbb{Q}[\sqrt{2}]$) is also a root. Hence by the Factor Theorem we can write

$$
\begin{aligned}
f(x) & =(x-(1+\sqrt{2}))(x-(1-\sqrt{2})) g(x) \\
& =\left(x^{2}-2 x-1\right) g(x)
\end{aligned}
$$

where $g(x)$ has degree 1 . The coefficients of $g(x)$ are rational since otherwise expanding the right hand side would show that $f(x)$ has non-rational coefficients, a contradiction.
(b) Prove that $f(x)$ has a rational root. (Hint: Prove that $g(x)$ has a rational root.)

Since $g(x)$ has rational coefficients and degree 1, we can write $g(x)=a x+b$ with $a, b \in \mathbb{Q}$ and $a \neq 0$. This implies that $g(-b / a)=0$, and hence

$$
f(-b / a)=\left((-b / a)^{2}-2(-b / a)-1\right) g(-b / a)=0
$$

We conclude that $f(x)$ has a rational root; namely, $-b / a$.

Statistics: 41 exams were submitted. The Average/Median/Standard Deviation were 17.49, 18, and 4.57, respectively. Three students received $24 / 25$ and one student received 25/25.

